|
|
|
import logging
|
|
import os
|
|
from typing import Any, Dict, Iterable, List, Optional
|
|
from fvcore.common.timer import Timer
|
|
|
|
from detectron2.data import DatasetCatalog, MetadataCatalog
|
|
from detectron2.data.datasets.lvis import get_lvis_instances_meta
|
|
from detectron2.structures import BoxMode
|
|
from detectron2.utils.file_io import PathManager
|
|
|
|
from ..utils import maybe_prepend_base_path
|
|
from .coco import (
|
|
DENSEPOSE_ALL_POSSIBLE_KEYS,
|
|
DENSEPOSE_METADATA_URL_PREFIX,
|
|
CocoDatasetInfo,
|
|
get_metadata,
|
|
)
|
|
|
|
DATASETS = [
|
|
CocoDatasetInfo(
|
|
name="densepose_lvis_v1_ds1_train_v1",
|
|
images_root="coco_",
|
|
annotations_fpath="lvis/densepose_lvis_v1_ds1_train_v1.json",
|
|
),
|
|
CocoDatasetInfo(
|
|
name="densepose_lvis_v1_ds1_val_v1",
|
|
images_root="coco_",
|
|
annotations_fpath="lvis/densepose_lvis_v1_ds1_val_v1.json",
|
|
),
|
|
CocoDatasetInfo(
|
|
name="densepose_lvis_v1_ds2_train_v1",
|
|
images_root="coco_",
|
|
annotations_fpath="lvis/densepose_lvis_v1_ds2_train_v1.json",
|
|
),
|
|
CocoDatasetInfo(
|
|
name="densepose_lvis_v1_ds2_val_v1",
|
|
images_root="coco_",
|
|
annotations_fpath="lvis/densepose_lvis_v1_ds2_val_v1.json",
|
|
),
|
|
CocoDatasetInfo(
|
|
name="densepose_lvis_v1_ds1_val_animals_100",
|
|
images_root="coco_",
|
|
annotations_fpath="lvis/densepose_lvis_v1_val_animals_100_v2.json",
|
|
),
|
|
]
|
|
|
|
|
|
def _load_lvis_annotations(json_file: str):
|
|
"""
|
|
Load COCO annotations from a JSON file
|
|
|
|
Args:
|
|
json_file: str
|
|
Path to the file to load annotations from
|
|
Returns:
|
|
Instance of `pycocotools.coco.COCO` that provides access to annotations
|
|
data
|
|
"""
|
|
from lvis import LVIS
|
|
|
|
json_file = PathManager.get_local_path(json_file)
|
|
logger = logging.getLogger(__name__)
|
|
timer = Timer()
|
|
lvis_api = LVIS(json_file)
|
|
if timer.seconds() > 1:
|
|
logger.info("Loading {} takes {:.2f} seconds.".format(json_file, timer.seconds()))
|
|
return lvis_api
|
|
|
|
|
|
def _add_categories_metadata(dataset_name: str) -> None:
|
|
metadict = get_lvis_instances_meta(dataset_name)
|
|
categories = metadict["thing_classes"]
|
|
metadata = MetadataCatalog.get(dataset_name)
|
|
metadata.categories = {i + 1: categories[i] for i in range(len(categories))}
|
|
logger = logging.getLogger(__name__)
|
|
logger.info(f"Dataset {dataset_name} has {len(categories)} categories")
|
|
|
|
|
|
def _verify_annotations_have_unique_ids(json_file: str, anns: List[List[Dict[str, Any]]]) -> None:
|
|
ann_ids = [ann["id"] for anns_per_image in anns for ann in anns_per_image]
|
|
assert len(set(ann_ids)) == len(ann_ids), "Annotation ids in '{}' are not unique!".format(
|
|
json_file
|
|
)
|
|
|
|
|
|
def _maybe_add_bbox(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
|
|
if "bbox" not in ann_dict:
|
|
return
|
|
obj["bbox"] = ann_dict["bbox"]
|
|
obj["bbox_mode"] = BoxMode.XYWH_ABS
|
|
|
|
|
|
def _maybe_add_segm(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
|
|
if "segmentation" not in ann_dict:
|
|
return
|
|
segm = ann_dict["segmentation"]
|
|
if not isinstance(segm, dict):
|
|
|
|
segm = [poly for poly in segm if len(poly) % 2 == 0 and len(poly) >= 6]
|
|
if len(segm) == 0:
|
|
return
|
|
obj["segmentation"] = segm
|
|
|
|
|
|
def _maybe_add_keypoints(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
|
|
if "keypoints" not in ann_dict:
|
|
return
|
|
keypts = ann_dict["keypoints"]
|
|
for idx, v in enumerate(keypts):
|
|
if idx % 3 != 2:
|
|
|
|
|
|
|
|
|
|
keypts[idx] = v + 0.5
|
|
obj["keypoints"] = keypts
|
|
|
|
|
|
def _maybe_add_densepose(obj: Dict[str, Any], ann_dict: Dict[str, Any]) -> None:
|
|
for key in DENSEPOSE_ALL_POSSIBLE_KEYS:
|
|
if key in ann_dict:
|
|
obj[key] = ann_dict[key]
|
|
|
|
|
|
def _combine_images_with_annotations(
|
|
dataset_name: str,
|
|
image_root: str,
|
|
img_datas: Iterable[Dict[str, Any]],
|
|
ann_datas: Iterable[Iterable[Dict[str, Any]]],
|
|
):
|
|
|
|
dataset_dicts = []
|
|
|
|
def get_file_name(img_root, img_dict):
|
|
|
|
|
|
|
|
split_folder, file_name = img_dict["coco_url"].split("/")[-2:]
|
|
return os.path.join(img_root + split_folder, file_name)
|
|
|
|
for img_dict, ann_dicts in zip(img_datas, ann_datas):
|
|
record = {}
|
|
record["file_name"] = get_file_name(image_root, img_dict)
|
|
record["height"] = img_dict["height"]
|
|
record["width"] = img_dict["width"]
|
|
record["not_exhaustive_category_ids"] = img_dict.get("not_exhaustive_category_ids", [])
|
|
record["neg_category_ids"] = img_dict.get("neg_category_ids", [])
|
|
record["image_id"] = img_dict["id"]
|
|
record["dataset"] = dataset_name
|
|
|
|
objs = []
|
|
for ann_dict in ann_dicts:
|
|
assert ann_dict["image_id"] == record["image_id"]
|
|
obj = {}
|
|
_maybe_add_bbox(obj, ann_dict)
|
|
obj["iscrowd"] = ann_dict.get("iscrowd", 0)
|
|
obj["category_id"] = ann_dict["category_id"]
|
|
_maybe_add_segm(obj, ann_dict)
|
|
_maybe_add_keypoints(obj, ann_dict)
|
|
_maybe_add_densepose(obj, ann_dict)
|
|
objs.append(obj)
|
|
record["annotations"] = objs
|
|
dataset_dicts.append(record)
|
|
return dataset_dicts
|
|
|
|
|
|
def load_lvis_json(annotations_json_file: str, image_root: str, dataset_name: str):
|
|
"""
|
|
Loads a JSON file with annotations in LVIS instances format.
|
|
Replaces `detectron2.data.datasets.coco.load_lvis_json` to handle metadata
|
|
in a more flexible way. Postpones category mapping to a later stage to be
|
|
able to combine several datasets with different (but coherent) sets of
|
|
categories.
|
|
|
|
Args:
|
|
|
|
annotations_json_file: str
|
|
Path to the JSON file with annotations in COCO instances format.
|
|
image_root: str
|
|
directory that contains all the images
|
|
dataset_name: str
|
|
the name that identifies a dataset, e.g. "densepose_coco_2014_train"
|
|
extra_annotation_keys: Optional[List[str]]
|
|
If provided, these keys are used to extract additional data from
|
|
the annotations.
|
|
"""
|
|
lvis_api = _load_lvis_annotations(PathManager.get_local_path(annotations_json_file))
|
|
|
|
_add_categories_metadata(dataset_name)
|
|
|
|
|
|
img_ids = sorted(lvis_api.imgs.keys())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
imgs = lvis_api.load_imgs(img_ids)
|
|
logger = logging.getLogger(__name__)
|
|
logger.info("Loaded {} images in LVIS format from {}".format(len(imgs), annotations_json_file))
|
|
|
|
|
|
|
|
anns = [lvis_api.img_ann_map[img_id] for img_id in img_ids]
|
|
|
|
_verify_annotations_have_unique_ids(annotations_json_file, anns)
|
|
dataset_records = _combine_images_with_annotations(dataset_name, image_root, imgs, anns)
|
|
return dataset_records
|
|
|
|
|
|
def register_dataset(dataset_data: CocoDatasetInfo, datasets_root: Optional[str] = None) -> None:
|
|
"""
|
|
Registers provided LVIS DensePose dataset
|
|
|
|
Args:
|
|
dataset_data: CocoDatasetInfo
|
|
Dataset data
|
|
datasets_root: Optional[str]
|
|
Datasets root folder (default: None)
|
|
"""
|
|
annotations_fpath = maybe_prepend_base_path(datasets_root, dataset_data.annotations_fpath)
|
|
images_root = maybe_prepend_base_path(datasets_root, dataset_data.images_root)
|
|
|
|
def load_annotations():
|
|
return load_lvis_json(
|
|
annotations_json_file=annotations_fpath,
|
|
image_root=images_root,
|
|
dataset_name=dataset_data.name,
|
|
)
|
|
|
|
DatasetCatalog.register(dataset_data.name, load_annotations)
|
|
MetadataCatalog.get(dataset_data.name).set(
|
|
json_file=annotations_fpath,
|
|
image_root=images_root,
|
|
evaluator_type="lvis",
|
|
**get_metadata(DENSEPOSE_METADATA_URL_PREFIX),
|
|
)
|
|
|
|
|
|
def register_datasets(
|
|
datasets_data: Iterable[CocoDatasetInfo], datasets_root: Optional[str] = None
|
|
) -> None:
|
|
"""
|
|
Registers provided LVIS DensePose datasets
|
|
|
|
Args:
|
|
datasets_data: Iterable[CocoDatasetInfo]
|
|
An iterable of dataset datas
|
|
datasets_root: Optional[str]
|
|
Datasets root folder (default: None)
|
|
"""
|
|
for dataset_data in datasets_data:
|
|
register_dataset(dataset_data, datasets_root)
|
|
|