Spaces:
Running
Running
# processor.py | |
import cv2 | |
import numpy as np | |
import os | |
from ultralytics import YOLO | |
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline | |
from PIL import Image, ImageDraw, ImageFont | |
import re | |
import smtplib | |
from email.mime.text import MIMEText | |
from email.mime.multipart import MIMEMultipart | |
from email.mime.base import MIMEBase | |
from email import encoders | |
import torch | |
from dotenv import load_dotenv | |
from transformers import AutoProcessor, AutoModel | |
# Load environment variables | |
load_dotenv() | |
# Email credentials (Use environment variables for security) | |
FROM_EMAIL = os.getenv("FROM_EMAIL") | |
EMAIL_PASSWORD = os.getenv("EMAIL_PASSWORD") | |
TO_EMAIL = os.getenv("TO_EMAIL") | |
SMTP_SERVER = 'smtp.gmail.com' | |
SMTP_PORT = 465 | |
# Arabic dictionary for converting license plate text | |
arabic_dict = { | |
"0": "٠", "1": "١", "2": "٢", "3": "٣", "4": "٤", "5": "٥", | |
"6": "٦", "7": "٧", "8": "٨", "9": "٩", "A": "ا", "B": "ب", | |
"J": "ح", "D": "د", "R": "ر", "S": "س", "X": "ص", "T": "ط", | |
"E": "ع", "G": "ق", "K": "ك", "L": "ل", "Z": "م", "N": "ن", | |
"H": "ه", "U": "و", "V": "ي", " ": " " | |
} | |
# Define class colors | |
class_colors = { | |
0: (0, 255, 0), # Green (Helmet) | |
1: (255, 0, 0), # Blue (License Plate) | |
2: (0, 0, 255), # Red (MotorbikeDelivery) | |
3: (255, 255, 0), # Cyan (MotorbikeSport) | |
4: (255, 0, 255), # Magenta (No Helmet) | |
5: (0, 255, 255), # Yellow (Person) | |
} | |
# Load the OCR model | |
processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True) | |
model_ocr = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True).to('cuda') | |
# Load YOLO model | |
# Ensure the path to the model is correct | |
model = YOLO('yolov8_Medium.pt') # Update the path as needed | |
# Define lane area coordinates (example coordinates) | |
red_lane = np.array([[2,1583],[1,1131],[1828,1141],[1912,1580]], np.int32) | |
# Path for Arabic font | |
font_path = "alfont_com_arial-1.ttf" | |
# Dictionary to track violations per license plate | |
violations_dict = {} | |
def filter_license_plate_text(license_plate_text): | |
"""Filter and format the license plate text.""" | |
license_plate_text = re.sub(r'[^A-Z0-9]+', "", license_plate_text) | |
match = re.search(r'(\d{4})\s*([A-Z]{2})', license_plate_text) | |
return f"{match.group(1)} {match.group(2)}" if match else None | |
def convert_to_arabic(license_plate_text): | |
"""Convert license plate text from Latin to Arabic script.""" | |
return "".join(arabic_dict.get(char, char) for char in license_plate_text) | |
def send_email(license_text, violation_image_path, violation_type): | |
"""Send an email notification with violation details and image attachment.""" | |
# Define the subject and body based on violation type | |
subjects = { | |
'No Helmet, In Red Lane': 'تنبيه مخالفة: عدم ارتداء خوذة ودخول المسار الأيسر', | |
'In Red Lane': 'تنبيه مخالفة: دخول المسار الأيسر', | |
'No Helmet': 'تنبيه مخالفة: عدم ارتداء خوذة' | |
} | |
bodies = { | |
'No Helmet, In Red Lane': f"لعدم ارتداء الخوذة ولدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة", | |
'In Red Lane': f"لدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة", | |
'No Helmet': f"لعدم ارتداء الخوذة ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة" | |
} | |
subject = subjects.get(violation_type, 'تنبيه مخالفة') | |
body = bodies.get(violation_type, f"تم تغريم دراجة نارية التي تحمل لوحة ({license_text}) بسبب مخالفة.") | |
# Create the email message | |
msg = MIMEMultipart() | |
msg['From'] = FROM_EMAIL | |
msg['To'] = TO_EMAIL | |
msg['Subject'] = subject | |
msg.attach(MIMEText(body, 'plain')) | |
# Attach the violation image | |
if os.path.exists(violation_image_path): | |
with open(violation_image_path, 'rb') as attachment_file: | |
part = MIMEBase('application', 'octet-stream') | |
part.set_payload(attachment_file.read()) | |
encoders.encode_base64(part) | |
part.add_header('Content-Disposition', f'attachment; filename={os.path.basename(violation_image_path)}') | |
msg.attach(part) | |
# Send the email using SMTP | |
try: | |
with smtplib.SMTP_SSL(SMTP_SERVER, SMTP_PORT) as server: | |
server.login(FROM_EMAIL, EMAIL_PASSWORD) | |
server.sendmail(FROM_EMAIL, TO_EMAIL, msg.as_string()) | |
print("Email with attachment sent successfully!") | |
except Exception as e: | |
print(f"Failed to send email: {e}") | |
def draw_text_pil(img, text, position, font_path, font_size, color): | |
"""Draw text on an image using PIL for better font support.""" | |
img_pil = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) | |
draw = ImageDraw.Draw(img_pil) | |
try: | |
font = ImageFont.truetype(font_path, size=font_size) | |
except IOError: | |
print(f"Font file not found at {font_path}. Using default font.") | |
font = ImageFont.load_default() | |
draw.text(position, text, font=font, fill=color) | |
return cv2.cvtColor(np.array(img_pil), cv2.COLOR_RGB2BGR) | |
def process_frame(frame, font_path, violation_image_path='violation.jpg'): | |
"""Process a single video frame for violations.""" | |
results = model.track(frame) | |
for box in results[0].boxes: | |
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy()) | |
label = model.names[int(box.cls)] | |
color = class_colors.get(int(box.cls), (255, 255, 255)) | |
confidence = box.conf[0].item() | |
# Draw bounding box and label | |
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3) | |
cv2.putText(frame, f'{label}: {confidence:.2f}', (x1, y1 - 10), | |
cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2) | |
if label == 'MotorbikeDelivery' and confidence >= 0.4: | |
motorbike_crop = frame[max(0, y1 - 50):y2, x1:x2] | |
delivery_center = ((x1 + x2) // 2, y2) | |
in_red_lane = cv2.pointPolygonTest(red_lane, delivery_center, False) | |
violation_types = [] | |
if in_red_lane >= 0: | |
violation_types.append("In Red Lane") | |
# Detect sub-objects within the motorbike crop | |
sub_results = model(motorbike_crop) | |
for sub_box in sub_results[0].boxes: | |
sub_x1, sub_y1, sub_x2, sub_y2 = map(int, sub_box.xyxy[0].cpu().numpy()) | |
sub_label = model.names[int(sub_box.cls)] | |
if sub_label == 'No_Helmet': | |
violation_types.append("No Helmet") | |
elif sub_label == 'License_plate': | |
license_crop = motorbike_crop[sub_y1:sub_y2, sub_x1:sub_x2] | |
if violation_types: | |
# Save violation image | |
cv2.imwrite(violation_image_path, frame) | |
license_plate_pil = Image.fromarray(cv2.cvtColor(license_crop, cv2.COLOR_BGR2RGB)) | |
license_plate_pil.save('license_plate.png') | |
# Perform OCR | |
try: | |
license_plate_text = model_ocr.chat(processor, temp_image_path, ocr_type='ocr') | |
except Exception as e: | |
print(f"OCR failed: {e}") | |
license_plate_text = "" | |
filtered_text = filter_license_plate_text(license_plate_text) | |
if filtered_text: | |
if filtered_text not in violations_dict: | |
violations_dict[filtered_text] = violation_types | |
send_email(filtered_text, violation_image_path, ', '.join(violation_types)) | |
else: | |
current = set(violations_dict[filtered_text]) | |
new = set(violation_types) | |
updated = current | new | |
if updated != current: | |
violations_dict[filtered_text] = list(updated) | |
send_email(filtered_text, violation_image_path, ', '.join(updated)) | |
arabic_text = convert_to_arabic(filtered_text) | |
frame = draw_text_pil(frame, filtered_text, (x1, y2 + 30), font_path, 30, (255, 255, 255)) | |
frame = draw_text_pil(frame, arabic_text, (x1, y2 + 60), font_path, 30, (0, 255, 0)) | |
return frame | |
def process_image(image_path, font_path, violation_image_path='violation.jpg'): | |
"""Process an uploaded image and return the processed image.""" | |
frame = cv2.imread(image_path) | |
if frame is None: | |
print("Error loading image") | |
return None | |
processed = process_frame(frame, font_path, violation_image_path) | |
return processed | |
def process_video(video_path): | |
# Paths for saving violation images | |
violation_image_path = 'violation.jpg' | |
# Track emails already sent to avoid duplicate emails | |
sent_emails = {} | |
# Dictionary to track violations per license plate | |
violations_dict = {} | |
# Open video file | |
cap = cv2.VideoCapture(video_path) | |
# Check if the video file opened successfully | |
if not cap.isOpened(): | |
print("Error opening video file") | |
return None | |
# Define codec and output video settings | |
fourcc = cv2.VideoWriter_fourcc(*'mp4v') | |
output_video_path = 'output_violation.mp4' | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # Frame width | |
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Frame height | |
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height)) | |
margin_y = 50 | |
# Process the video frame by frame | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if not ret: | |
break # End of video | |
# Draw the red lane polygon on each frame | |
cv2.polylines(frame, [red_lane], isClosed=True, color=(0, 0, 255), thickness=3) # Red lane | |
# Perform detection using YOLO on the current frame | |
results = model.track(frame) | |
# Process each detection in the results | |
for box in results[0].boxes: | |
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy()) # Bounding box coordinates | |
label = model.names[int(box.cls)] # Class name (MotorbikeDelivery, Helmet, etc.) | |
color = class_colors[int(box.cls)] | |
confidence = box.conf[0].item() | |
# Initialize flags and variables for the violations | |
helmet_violation = False | |
lane_violation = False | |
violation_type = [] | |
# Draw bounding box around detected object | |
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3) | |
# Add label to the box (e.g., 'MotorbikeDelivery') | |
cv2.putText(frame, f'{label}: {confidence:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2) | |
# Detect MotorbikeDelivery | |
if label == 'MotorbikeDelivery' and confidence >= 0.4: | |
motorbike_crop = frame[max(0, y1 - margin_y):y2, x1:x2] | |
delivery_center = ((x1 + x2) // 2, (y2)) | |
in_red_lane = cv2.pointPolygonTest(red_lane, delivery_center, False) | |
if in_red_lane >= 0: | |
lane_violation = True | |
violation_type.append("In Red Lane") | |
# Perform detection within the cropped motorbike region | |
sub_results = model(motorbike_crop) | |
for result in sub_results[0].boxes: | |
sub_x1, sub_y1, sub_x2, sub_y2 = map(int, result.xyxy[0].cpu().numpy()) # Bounding box coordinates | |
sub_label = model.names[int(result.cls)] | |
sub_color = (255, 0, 0) # Red color for the bounding box of sub-objects | |
# Draw bounding box around sub-detected objects (No_Helmet, License_plate, etc.) | |
cv2.rectangle(motorbike_crop, (sub_x1, sub_y1), (sub_x2, sub_y2), sub_color, 2) | |
cv2.putText(motorbike_crop, sub_label, (sub_x1, sub_y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, sub_color, 2) | |
if sub_label == 'No_Helmet': | |
helmet_violation = True | |
violation_type.append("No Helmet") | |
continue | |
if sub_label == 'License_plate': | |
license_crop = motorbike_crop[sub_y1:sub_y2, sub_x1:sub_x2] | |
# Apply OCR if a violation is detected | |
if helmet_violation or lane_violation: | |
# Perform OCR on the license plate | |
cv2.imwrite(violation_image_path, frame) | |
license_plate_pil = Image.fromarray(cv2.cvtColor(license_crop, cv2.COLOR_BGR2RGB)) | |
temp_image_path = 'license_plate.png' | |
license_plate_pil.save(temp_image_path) | |
license_plate_text = model_ocr.chat(processor, temp_image_path, ocr_type='ocr') | |
filtered_text = filter_license_plate_text(license_plate_text) | |
if filtered_text: | |
# Track violations for the license plate | |
if filtered_text not in violations_dict: | |
violations_dict[filtered_text] = violation_type | |
send_email(filtered_text, violation_image_path, ', '.join(violation_type)) | |
else: | |
# Update violations if new ones are found | |
current_violations = set(violations_dict[filtered_text]) | |
new_violations = set(violation_type) | |
updated_violations = list(current_violations | new_violations) | |
if updated_violations != violations_dict[filtered_text]: | |
violations_dict[filtered_text] = updated_violations | |
send_email(filtered_text, violation_image_path, ', '.join(updated_violations)) | |
# Draw OCR text (English and Arabic) on the original frame | |
arabic_text = convert_to_arabic(filtered_text) | |
frame = draw_text_pil(frame, filtered_text, (x1, y2 + 30), font_path, font_size=30, color=(255, 255, 255)) | |
frame = draw_text_pil(frame, arabic_text, (x1, y2 + 60), font_path, font_size=30, color=(0, 255, 0)) | |
# Write the processed frame to the output video | |
out.write(frame) | |
# Release resources when done | |
cap.release() | |
out.release() | |
return output_video_path |