Spaces:
Running
Running
File size: 15,251 Bytes
6550da2 0a0fad6 6550da2 1289698 0a0fad6 d501233 0a0fad6 6550da2 1289698 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 f748b36 0a0fad6 6550da2 0a0fad6 6550da2 3eaf4f0 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 1289698 0a0fad6 1289698 0a0fad6 1289698 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 0a0fad6 6550da2 1289698 6550da2 1289698 0a0fad6 6550da2 1289698 6550da2 0a0fad6 6550da2 1289698 6550da2 1289698 6550da2 0a0fad6 6550da2 0a0fad6 1289698 6550da2 1289698 6550da2 1289698 0a0fad6 6550da2 1289698 0a0fad6 ded2692 0a0fad6 6550da2 1289698 6550da2 1289698 0a0fad6 6550da2 1289698 0a0fad6 7ecf8c3 3eaf4f0 7ecf8c3 0a0fad6 7ecf8c3 0a0fad6 7ecf8c3 0a0fad6 3eaf4f0 0a0fad6 7ecf8c3 0a0fad6 7ecf8c3 0a0fad6 7ecf8c3 0a0fad6 7ecf8c3 0a0fad6 7ecf8c3 0a0fad6 7ecf8c3 3eaf4f0 7ecf8c3 0a0fad6 7ecf8c3 0a0fad6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
# processor.py
import cv2
import numpy as np
import os
from ultralytics import YOLO
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
from PIL import Image, ImageDraw, ImageFont
import re
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from email.mime.base import MIMEBase
from email import encoders
import torch
from dotenv import load_dotenv
from transformers import AutoProcessor, AutoModel
# Load environment variables
load_dotenv()
# Email credentials (Use environment variables for security)
FROM_EMAIL = os.getenv("FROM_EMAIL")
EMAIL_PASSWORD = os.getenv("EMAIL_PASSWORD")
TO_EMAIL = os.getenv("TO_EMAIL")
SMTP_SERVER = 'smtp.gmail.com'
SMTP_PORT = 465
# Arabic dictionary for converting license plate text
arabic_dict = {
"0": "٠", "1": "١", "2": "٢", "3": "٣", "4": "٤", "5": "٥",
"6": "٦", "7": "٧", "8": "٨", "9": "٩", "A": "ا", "B": "ب",
"J": "ح", "D": "د", "R": "ر", "S": "س", "X": "ص", "T": "ط",
"E": "ع", "G": "ق", "K": "ك", "L": "ل", "Z": "م", "N": "ن",
"H": "ه", "U": "و", "V": "ي", " ": " "
}
# Define class colors
class_colors = {
0: (0, 255, 0), # Green (Helmet)
1: (255, 0, 0), # Blue (License Plate)
2: (0, 0, 255), # Red (MotorbikeDelivery)
3: (255, 255, 0), # Cyan (MotorbikeSport)
4: (255, 0, 255), # Magenta (No Helmet)
5: (0, 255, 255), # Yellow (Person)
}
# Load the OCR model
processor = AutoProcessor.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
model_ocr = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True).to('cuda')
# Load YOLO model
# Ensure the path to the model is correct
model = YOLO('yolov8_Medium.pt') # Update the path as needed
# Define lane area coordinates (example coordinates)
red_lane = np.array([[2,1583],[1,1131],[1828,1141],[1912,1580]], np.int32)
# Path for Arabic font
font_path = "alfont_com_arial-1.ttf"
# Dictionary to track violations per license plate
violations_dict = {}
def filter_license_plate_text(license_plate_text):
"""Filter and format the license plate text."""
license_plate_text = re.sub(r'[^A-Z0-9]+', "", license_plate_text)
match = re.search(r'(\d{4})\s*([A-Z]{2})', license_plate_text)
return f"{match.group(1)} {match.group(2)}" if match else None
def convert_to_arabic(license_plate_text):
"""Convert license plate text from Latin to Arabic script."""
return "".join(arabic_dict.get(char, char) for char in license_plate_text)
def send_email(license_text, violation_image_path, violation_type):
"""Send an email notification with violation details and image attachment."""
# Define the subject and body based on violation type
subjects = {
'No Helmet, In Red Lane': 'تنبيه مخالفة: عدم ارتداء خوذة ودخول المسار الأيسر',
'In Red Lane': 'تنبيه مخالفة: دخول المسار الأيسر',
'No Helmet': 'تنبيه مخالفة: عدم ارتداء خوذة'
}
bodies = {
'No Helmet, In Red Lane': f"لعدم ارتداء الخوذة ولدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة",
'In Red Lane': f"لدخولها المسار الأيسر ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة",
'No Helmet': f"لعدم ارتداء الخوذة ({license_text}) تم تغريم دراجة نارية التي تحمل لوحة"
}
subject = subjects.get(violation_type, 'تنبيه مخالفة')
body = bodies.get(violation_type, f"تم تغريم دراجة نارية التي تحمل لوحة ({license_text}) بسبب مخالفة.")
# Create the email message
msg = MIMEMultipart()
msg['From'] = FROM_EMAIL
msg['To'] = TO_EMAIL
msg['Subject'] = subject
msg.attach(MIMEText(body, 'plain'))
# Attach the violation image
if os.path.exists(violation_image_path):
with open(violation_image_path, 'rb') as attachment_file:
part = MIMEBase('application', 'octet-stream')
part.set_payload(attachment_file.read())
encoders.encode_base64(part)
part.add_header('Content-Disposition', f'attachment; filename={os.path.basename(violation_image_path)}')
msg.attach(part)
# Send the email using SMTP
try:
with smtplib.SMTP_SSL(SMTP_SERVER, SMTP_PORT) as server:
server.login(FROM_EMAIL, EMAIL_PASSWORD)
server.sendmail(FROM_EMAIL, TO_EMAIL, msg.as_string())
print("Email with attachment sent successfully!")
except Exception as e:
print(f"Failed to send email: {e}")
def draw_text_pil(img, text, position, font_path, font_size, color):
"""Draw text on an image using PIL for better font support."""
img_pil = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img_pil)
try:
font = ImageFont.truetype(font_path, size=font_size)
except IOError:
print(f"Font file not found at {font_path}. Using default font.")
font = ImageFont.load_default()
draw.text(position, text, font=font, fill=color)
return cv2.cvtColor(np.array(img_pil), cv2.COLOR_RGB2BGR)
def process_frame(frame, font_path, violation_image_path='violation.jpg'):
"""Process a single video frame for violations."""
results = model.track(frame)
for box in results[0].boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
label = model.names[int(box.cls)]
color = class_colors.get(int(box.cls), (255, 255, 255))
confidence = box.conf[0].item()
# Draw bounding box and label
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3)
cv2.putText(frame, f'{label}: {confidence:.2f}', (x1, y1 - 10),
cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
if label == 'MotorbikeDelivery' and confidence >= 0.4:
motorbike_crop = frame[max(0, y1 - 50):y2, x1:x2]
delivery_center = ((x1 + x2) // 2, y2)
in_red_lane = cv2.pointPolygonTest(red_lane, delivery_center, False)
violation_types = []
if in_red_lane >= 0:
violation_types.append("In Red Lane")
# Detect sub-objects within the motorbike crop
sub_results = model(motorbike_crop)
for sub_box in sub_results[0].boxes:
sub_x1, sub_y1, sub_x2, sub_y2 = map(int, sub_box.xyxy[0].cpu().numpy())
sub_label = model.names[int(sub_box.cls)]
if sub_label == 'No_Helmet':
violation_types.append("No Helmet")
elif sub_label == 'License_plate':
license_crop = motorbike_crop[sub_y1:sub_y2, sub_x1:sub_x2]
if violation_types:
# Save violation image
cv2.imwrite(violation_image_path, frame)
license_plate_pil = Image.fromarray(cv2.cvtColor(license_crop, cv2.COLOR_BGR2RGB))
license_plate_pil.save('license_plate.png')
# Perform OCR
try:
license_plate_text = model_ocr.chat(processor, temp_image_path, ocr_type='ocr')
except Exception as e:
print(f"OCR failed: {e}")
license_plate_text = ""
filtered_text = filter_license_plate_text(license_plate_text)
if filtered_text:
if filtered_text not in violations_dict:
violations_dict[filtered_text] = violation_types
send_email(filtered_text, violation_image_path, ', '.join(violation_types))
else:
current = set(violations_dict[filtered_text])
new = set(violation_types)
updated = current | new
if updated != current:
violations_dict[filtered_text] = list(updated)
send_email(filtered_text, violation_image_path, ', '.join(updated))
arabic_text = convert_to_arabic(filtered_text)
frame = draw_text_pil(frame, filtered_text, (x1, y2 + 30), font_path, 30, (255, 255, 255))
frame = draw_text_pil(frame, arabic_text, (x1, y2 + 60), font_path, 30, (0, 255, 0))
return frame
def process_image(image_path, font_path, violation_image_path='violation.jpg'):
"""Process an uploaded image and return the processed image."""
frame = cv2.imread(image_path)
if frame is None:
print("Error loading image")
return None
processed = process_frame(frame, font_path, violation_image_path)
return processed
def process_video(video_path):
# Paths for saving violation images
violation_image_path = 'violation.jpg'
# Track emails already sent to avoid duplicate emails
sent_emails = {}
# Dictionary to track violations per license plate
violations_dict = {}
# Open video file
cap = cv2.VideoCapture(video_path)
# Check if the video file opened successfully
if not cap.isOpened():
print("Error opening video file")
return None
# Define codec and output video settings
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video_path = 'output_violation.mp4'
fps = cap.get(cv2.CAP_PROP_FPS)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) # Frame width
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # Frame height
out = cv2.VideoWriter(output_video_path, fourcc, fps, (width, height))
margin_y = 50
# Process the video frame by frame
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break # End of video
# Draw the red lane polygon on each frame
cv2.polylines(frame, [red_lane], isClosed=True, color=(0, 0, 255), thickness=3) # Red lane
# Perform detection using YOLO on the current frame
results = model.track(frame)
# Process each detection in the results
for box in results[0].boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy()) # Bounding box coordinates
label = model.names[int(box.cls)] # Class name (MotorbikeDelivery, Helmet, etc.)
color = class_colors[int(box.cls)]
confidence = box.conf[0].item()
# Initialize flags and variables for the violations
helmet_violation = False
lane_violation = False
violation_type = []
# Draw bounding box around detected object
cv2.rectangle(frame, (x1, y1), (x2, y2), color, 3)
# Add label to the box (e.g., 'MotorbikeDelivery')
cv2.putText(frame, f'{label}: {confidence:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 2)
# Detect MotorbikeDelivery
if label == 'MotorbikeDelivery' and confidence >= 0.4:
motorbike_crop = frame[max(0, y1 - margin_y):y2, x1:x2]
delivery_center = ((x1 + x2) // 2, (y2))
in_red_lane = cv2.pointPolygonTest(red_lane, delivery_center, False)
if in_red_lane >= 0:
lane_violation = True
violation_type.append("In Red Lane")
# Perform detection within the cropped motorbike region
sub_results = model(motorbike_crop)
for result in sub_results[0].boxes:
sub_x1, sub_y1, sub_x2, sub_y2 = map(int, result.xyxy[0].cpu().numpy()) # Bounding box coordinates
sub_label = model.names[int(result.cls)]
sub_color = (255, 0, 0) # Red color for the bounding box of sub-objects
# Draw bounding box around sub-detected objects (No_Helmet, License_plate, etc.)
cv2.rectangle(motorbike_crop, (sub_x1, sub_y1), (sub_x2, sub_y2), sub_color, 2)
cv2.putText(motorbike_crop, sub_label, (sub_x1, sub_y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, sub_color, 2)
if sub_label == 'No_Helmet':
helmet_violation = True
violation_type.append("No Helmet")
continue
if sub_label == 'License_plate':
license_crop = motorbike_crop[sub_y1:sub_y2, sub_x1:sub_x2]
# Apply OCR if a violation is detected
if helmet_violation or lane_violation:
# Perform OCR on the license plate
cv2.imwrite(violation_image_path, frame)
license_plate_pil = Image.fromarray(cv2.cvtColor(license_crop, cv2.COLOR_BGR2RGB))
temp_image_path = 'license_plate.png'
license_plate_pil.save(temp_image_path)
license_plate_text = model_ocr.chat(processor, temp_image_path, ocr_type='ocr')
filtered_text = filter_license_plate_text(license_plate_text)
if filtered_text:
# Track violations for the license plate
if filtered_text not in violations_dict:
violations_dict[filtered_text] = violation_type
send_email(filtered_text, violation_image_path, ', '.join(violation_type))
else:
# Update violations if new ones are found
current_violations = set(violations_dict[filtered_text])
new_violations = set(violation_type)
updated_violations = list(current_violations | new_violations)
if updated_violations != violations_dict[filtered_text]:
violations_dict[filtered_text] = updated_violations
send_email(filtered_text, violation_image_path, ', '.join(updated_violations))
# Draw OCR text (English and Arabic) on the original frame
arabic_text = convert_to_arabic(filtered_text)
frame = draw_text_pil(frame, filtered_text, (x1, y2 + 30), font_path, font_size=30, color=(255, 255, 255))
frame = draw_text_pil(frame, arabic_text, (x1, y2 + 60), font_path, font_size=30, color=(0, 255, 0))
# Write the processed frame to the output video
out.write(frame)
# Release resources when done
cap.release()
out.release()
return output_video_path |