Tesneem's picture
Update app.py
fdf85cd verified
raw
history blame
2.35 kB
import gradio as gr
# def greet(name):
# return "Hello " + name + "!!"
from sentence_transformers import SentenceTransformer
import numpy as np
from sklearn.metrics.pairwise import cosine_similarity
from datasets import load_dataset
# Load pre-trained SentenceTransformer model
embedding_model = SentenceTransformer("thenlper/gte-large")
# Example dataset with genres (replace with your actual data)
dataset = load_dataset("hugginglearners/netflix-shows")
# Combine description and genre for embedding
def combine_description_title_and_genre(description, listed_in, title):
return f"{description} Genre: {listed_in} Title: {title}"
# Generate embedding for the query
def get_embedding(text):
return embedding_model.encode(text)
# Vector search function
def vector_search(query):
query_embedding = get_embedding(query)
# Generate embeddings for the combined description and genre
embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in dataset])
# Calculate cosine similarity between the query and all embeddings
similarities = cosine_similarity([query_embedding], embeddings)
# Adjust similarity scores based on ratings
ratings = np.array([item["rating"] for item in dataset])
adjusted_similarities = similarities * ratings.reshape(-1, 1)
# Get top N most similar items (e.g., top 3)
top_n = 3
top_indices = adjusted_similarities[0].argsort()[-top_n:][::-1] # Get indices of the top N results
top_items = [dataset[i] for i in top_indices]
# Format the output for display
search_result = ""
for item in top_items:
search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}, Rating: {item['rating']}\n"
return search_result
# Gradio Interface
def movie_search(query):
return vector_search(query)
iface = gr.Interface(fn=movie_search,
inputs="text",
outputs="text",
live=True,
title="Netflix Recommendation System",
description="Enter a query to get Netflix recommendations based on description and genre.")
iface.launch()
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
# demo.launch()