Tesneem's picture
Update app.py
68e342d verified
raw
history blame
5.86 kB
import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity
# Load embeddings and metadata
embeddings = np.load("netflix_embeddings.npy") #created using sentence_transformers on kaggle
metadata = pd.read_csv("netflix_metadata.csv") #created using sentence_transformers on kaggle
# Vector search function
def vector_search(query, model):
query_embedding = model.encode(query)
similarities = cosine_similarity([query_embedding], embeddings)[0]
top_n = 3
top_indices = similarities.argsort()[-top_n:][::-1]
results = metadata.iloc[top_indices]
# Format results for display
result_text = "\n".join(f"Title: {row['title']}, Description: {row['description']}, Genre: {row['listed_in']}" for _, row in results.iterrows())
return result_text
# Gradio Interface
import gradio as gr
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("thenlper/gte-large")
with gr.Blocks() as demo:
gr.Markdown("# Netflix Recommendation System")
gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
query = gr.Textbox(label="Enter your query")
output = gr.Textbox(label="Recommendations")
submit_button = gr.Button("Submit")
submit_button.click(fn=lambda q: vector_search(q, model), inputs=query, outputs=output)
demo.launch()
# import gradio as gr
# # def greet(name):
# # return "Hello " + name + "!!"
# from sentence_transformers import SentenceTransformer
# import numpy as np
# from sklearn.metrics.pairwise import cosine_similarity
# from datasets import load_dataset
# # Load pre-trained SentenceTransformer model
# embedding_model = SentenceTransformer("thenlper/gte-large")
# # # Example dataset with genres (replace with your actual data)
# # dataset = load_dataset("hugginglearners/netflix-shows")
# # dataset = dataset.filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None)
# # data = dataset['train'] # Accessing the 'train' split of the dataset
# # # Convert the dataset to a list of dictionaries for easier indexing
# # data_list = list[data]
# # print(data_list)
# # # Combine description and genre for embedding
# # def combine_description_title_and_genre(description, listed_in, title):
# # return f"{description} Genre: {listed_in} Title: {title}"
# # # Generate embedding for the query
# # def get_embedding(text):
# # return embedding_model.encode(text)
# # # Vector search function
# # def vector_search(query):
# # query_embedding = get_embedding(query)
# # # Generate embeddings for the combined description and genre
# # embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in data_list[0]])
# # # Calculate cosine similarity between the query and all embeddings
# # similarities = cosine_similarity([query_embedding], embeddings)
# # Load dataset (using the correct dataset identifier for your case)
# dataset = load_dataset("hugginglearners/netflix-shows")
# # Combine description and genre for embedding
# def combine_description_title_and_genre(description, listed_in, title):
# return f"{description} Genre: {listed_in} Title: {title}"
# # Generate embedding for the query
# def get_embedding(text):
# return embedding_model.encode(text)
# # Vector search function
# def vector_search(query):
# query_embedding = get_embedding(query)
# # Function to generate embeddings for each item in the dataset
# def generate_embeddings(example):
# return {
# 'embedding': get_embedding(combine_description_title_and_genre(example["description"], example["listed_in"], example["title"]))
# }
# # Generate embeddings for the dataset using map
# embeddings_dataset = dataset["train"].map(generate_embeddings)
# # Extract embeddings
# embeddings = np.array([embedding['embedding'] for embedding in embeddings_dataset])
# # Calculate cosine similarity between the query and all embeddings
# similarities = cosine_similarity([query_embedding], embeddings)
# # # Adjust similarity scores based on ratings
# # ratings = np.array([item["rating"] for item in data_list])
# # adjusted_similarities = similarities * ratings.reshape(-1, 1)
# # Get top N most similar items (e.g., top 3)
# top_n = 3
# top_indices = similarities[0].argsort()[-top_n:][::-1] # Get indices of the top N results
# top_items = [dataset["train"][i] for i in top_indices]
# # Format the output for display
# search_result = ""
# for item in top_items:
# search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}\n"
# return search_result
# # Gradio Interface
# def movie_search(query):
# return vector_search(query)
# with gr.Blocks() as demo:
# gr.Markdown("# Netflix Recommendation System")
# gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
# query = gr.Textbox(label="Enter your query")
# output = gr.Textbox(label="Recommendations")
# submit_button = gr.Button("Submit")
# submit_button.click(fn=movie_search, inputs=query, outputs=output)
# demo.launch()
# # iface = gr.Interface(fn=movie_search,
# # inputs=gr.inputs.Textbox(label="Enter your query"),
# # outputs="text",
# # live=True,
# # title="Netflix Recommendation System",
# # description="Enter a query to get Netflix recommendations based on description and genre.")
# # iface.launch()
# # demo = gr.Interface(fn=greet, inputs="text", outputs="text")
# # demo.launch()