File size: 5,615 Bytes
fdf85cd
3331cdd
fdf85cd
 
3331cdd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61804bb
 
 
 
 
 
 
 
 
 
 
 
 
 
3331cdd
 
 
 
 
fdf85cd
3331cdd
 
fdf85cd
3331cdd
 
fdf85cd
3331cdd
 
 
 
 
 
 
 
 
 
fdf85cd
3331cdd
 
 
 
fdf85cd
3331cdd
fdf85cd
3331cdd
 
 
 
 
 
 
 
 
fdf85cd
3331cdd
fdf85cd
3331cdd
bea07d1
fed5fe3
3331cdd
 
 
 
 
 
bea07d1
3331cdd
fdf85cd
 
3331cdd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import numpy as np
import pandas as pd
from sklearn.metrics.pairwise import cosine_similarity

# Load embeddings and metadata
embeddings = np.load("path/to/netflix_embeddings.npy")
metadata = pd.read_csv("path/to/netflix_metadata.csv")

# Vector search function
def vector_search(query, model):
    query_embedding = model.encode(query)
    similarities = cosine_similarity([query_embedding], embeddings)[0]
    top_n = 3
    top_indices = similarities.argsort()[-top_n:][::-1]
    results = metadata.iloc[top_indices]
    
    # Format results for display
    result_text = "\n".join(f"Title: {row['title']}, Description: {row['description']}, Genre: {row['listed_in']}" for _, row in results.iterrows())
    return result_text

# Gradio Interface
import gradio as gr
from sentence_transformers import SentenceTransformer

model = SentenceTransformer("thenlper/gte-large")
with gr.Blocks() as demo:
    query = gr.Textbox(label="Enter your query")
    output = gr.Textbox(label="Recommendations")
    submit_button = gr.Button("Submit")
    
    submit_button.click(fn=lambda q: vector_search(q, model), inputs=query, outputs=output)

demo.launch()

# import gradio as gr

# # def greet(name):
# #     return "Hello " + name + "!!"
# from sentence_transformers import SentenceTransformer
# import numpy as np
# from sklearn.metrics.pairwise import cosine_similarity
# from datasets import load_dataset
# # Load pre-trained SentenceTransformer model
# embedding_model = SentenceTransformer("thenlper/gte-large")

# # # Example dataset with genres (replace with your actual data)
# # dataset = load_dataset("hugginglearners/netflix-shows")
# # dataset = dataset.filter(lambda x: x['description'] is not None and x['listed_in'] is not None and x['title'] is not None)
# # data = dataset['train']  # Accessing the 'train' split of the dataset

# # # Convert the dataset to a list of dictionaries for easier indexing
# # data_list = list[data]
# # print(data_list)
# # # Combine description and genre for embedding
# # def combine_description_title_and_genre(description, listed_in, title):
# #     return f"{description} Genre: {listed_in} Title: {title}"

# # # Generate embedding for the query
# # def get_embedding(text):
# #     return embedding_model.encode(text)

# # # Vector search function
# # def vector_search(query):
# #     query_embedding = get_embedding(query)
    
# #     # Generate embeddings for the combined description and genre
# #     embeddings = np.array([get_embedding(combine_description_title_and_genre(item["description"], item["listed_in"],item["title"])) for item in data_list[0]])

# #     # Calculate cosine similarity between the query and all embeddings
# #     similarities = cosine_similarity([query_embedding], embeddings)
# # Load dataset (using the correct dataset identifier for your case)
# dataset = load_dataset("hugginglearners/netflix-shows")

# # Combine description and genre for embedding
# def combine_description_title_and_genre(description, listed_in, title):
#     return f"{description} Genre: {listed_in} Title: {title}"

# # Generate embedding for the query
# def get_embedding(text):
#     return embedding_model.encode(text)

# # Vector search function
# def vector_search(query):
#     query_embedding = get_embedding(query)
    
#     # Function to generate embeddings for each item in the dataset
#     def generate_embeddings(example):
#         return {
#             'embedding': get_embedding(combine_description_title_and_genre(example["description"], example["listed_in"], example["title"]))
#         }

#     # Generate embeddings for the dataset using map
#     embeddings_dataset = dataset["train"].map(generate_embeddings)

#     # Extract embeddings
#     embeddings = np.array([embedding['embedding'] for embedding in embeddings_dataset])

#     # Calculate cosine similarity between the query and all embeddings
#     similarities = cosine_similarity([query_embedding], embeddings)
#     # # Adjust similarity scores based on ratings
#     # ratings = np.array([item["rating"] for item in data_list])
#     # adjusted_similarities = similarities * ratings.reshape(-1, 1)

#      # Get top N most similar items (e.g., top 3)
#     top_n = 3
#     top_indices = similarities[0].argsort()[-top_n:][::-1]  # Get indices of the top N results
#     top_items = [dataset["train"][i] for i in top_indices]
    
#     # Format the output for display
#     search_result = ""
#     for item in top_items:
#         search_result += f"Title: {item['title']}, Description: {item['description']}, Genre: {item['listed_in']}\n"

#     return search_result

# # Gradio Interface
# def movie_search(query):
#     return vector_search(query)
# with gr.Blocks() as demo:
#     gr.Markdown("# Netflix Recommendation System")
#     gr.Markdown("Enter a query to receive Netflix show recommendations based on title, description, and genre.")
#     query = gr.Textbox(label="Enter your query")
#     output = gr.Textbox(label="Recommendations")
#     submit_button = gr.Button("Submit")

#     submit_button.click(fn=movie_search, inputs=query, outputs=output)

# demo.launch()


# # iface = gr.Interface(fn=movie_search, 
# #                      inputs=gr.inputs.Textbox(label="Enter your query"), 
# #                      outputs="text", 
# #                      live=True,
# #                      title="Netflix Recommendation System",
# #                      description="Enter a query to get Netflix recommendations based on description and genre.")

# # iface.launch()


# # demo = gr.Interface(fn=greet, inputs="text", outputs="text")
# # demo.launch()