Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
from transformers import LlamaForCausalLM, LlamaConfig | |
from transformers import LogitsProcessor, LogitsProcessorList | |
from transformers import AutoModel | |
from .generation import AutoImageTokenGenerationProcessor | |
import torch.nn.functional as F | |
BOI_TOKEN = '<img>' | |
EOI_TOKEN = '</img>' | |
IMG_TOKEN = '<img_{:05d}>' | |
def cosine_loss(rec, target): | |
target = target / target.norm(dim=-1, keepdim=True) | |
rec = rec / rec.norm(dim=-1, keepdim=True) | |
rec_loss = (1 - (target * rec).sum(-1)).mean() | |
return rec_loss | |
class ContinuousLVLM(nn.Module): | |
def __init__(self, llm, input_resampler, output_resampler, lm_loss_scale=1.0, rec_loss_scale=1.0) -> None: | |
super().__init__() | |
self.llm = llm | |
self.input_resampler = input_resampler | |
self.output_resampler = output_resampler | |
self.lm_loss_scale = lm_loss_scale | |
self.rec_loss_scale = rec_loss_scale | |
# input_resampler.requires_grad_(False) | |
# output_resampler.requires_grad_(False) | |
def forward(self, input_ids, attention_mask, labels, image_embeds, embeds_gen_mask, embeds_cmp_mask, ids_gen_mask, | |
ids_cmp_mask, return_recon_image_embeds=False): | |
input_embeds = self.llm.get_input_embeddings()(input_ids) # bz x seq_len x dim, 4 x 160 x 4096 | |
bz, sq, dim = input_embeds.shape | |
if image_embeds is not None: | |
image_embeds_lm = self.input_resampler(image_embeds) # num_imgs_in_batch x nq x dim, 4 x 64 x 4096 | |
has_image = True | |
else: | |
image_embeds = torch.randn(bz, self.output_resampler.num_queries, | |
self.output_resampler.embed_dim).to(input_embeds.device, | |
dtype=input_embeds.dtype) | |
image_embeds_lm = self.input_resampler(image_embeds) | |
has_image = False | |
has_image_input = has_image and embeds_cmp_mask.sum().item() > 0 | |
has_image_output = has_image and embeds_gen_mask.sum().item() > 0 | |
if has_image_input: | |
input_embeds[ids_cmp_mask] = image_embeds_lm[embeds_cmp_mask].view(-1, dim) # eg, 128 x 4096 | |
# zero_loss = 0.0 | |
else: | |
min_bz = min(input_embeds.shape[0], image_embeds_lm.shape[0]) | |
input_embeds[:min_bz, :self.input_resampler. | |
num_queries, :] = input_embeds[:min_bz, :self.input_resampler. | |
num_queries, :] + 0.0 * image_embeds_lm[:min_bz, :, :] | |
output_lm = self.llm(attention_mask=attention_mask, | |
inputs_embeds=input_embeds, | |
labels=labels, | |
output_hidden_states=True, | |
return_dict=True) | |
lm_loss = output_lm['loss'] | |
last_hidden_state = output_lm.hidden_states[-1] # 4 x 160 x 4096 | |
if has_image_output: | |
target_embeds = image_embeds[embeds_gen_mask] # num_imgs_gen_target x nq_in x dim_in, 2 x 256 x 4096 | |
num_imgs_for_rec = target_embeds.shape[0] | |
output_image_embeds = last_hidden_state[ids_gen_mask].view(num_imgs_for_rec, -1, | |
dim) # 128 x 4096 -> 2 x 64 x 4096 | |
recon_image_embeds = self.output_resampler(output_image_embeds) # 2 x 256 x 4096 | |
rec_loss = cosine_loss(recon_image_embeds, target_embeds) | |
else: | |
output_image_embeds = torch.randn(bz, self.input_resampler.num_queries, | |
self.input_resampler.embed_dim).to(input_embeds.device, | |
dtype=input_embeds.dtype) | |
recon_image_embeds = self.output_resampler(output_image_embeds) | |
target_embeds = torch.randn(bz, self.output_resampler.num_queries, | |
self.output_resampler.embed_dim).to(input_embeds.device, | |
dtype=input_embeds.dtype) | |
rec_loss = cosine_loss(recon_image_embeds, target_embeds) * 0.0 | |
total_loss = self.lm_loss_scale * lm_loss + self.rec_loss_scale * rec_loss | |
if return_recon_image_embeds and has_image_output: | |
return {'total_loss': total_loss, 'lm_loss': lm_loss, 'rec_loss': rec_loss, | |
'recon_image_embeds': recon_image_embeds} | |
else: | |
return {'total_loss': total_loss, 'lm_loss': lm_loss, 'rec_loss': rec_loss} | |
def generate(self, | |
tokenizer, | |
prompt=None, | |
input_ids=None, | |
image_embeds=None, | |
embeds_cmp_mask=None, | |
ids_cmp_mask=None, | |
logits_processor=None, | |
num_img_gen_tokens=64, | |
temperature=0.7, | |
num_beams=1, | |
max_new_tokens=120, | |
top_p=0.5, | |
past_key_values=None, | |
# position_ids=None, | |
dtype=torch.float16, | |
device='cuda'): | |
if logits_processor is None: | |
logits_processor = LogitsProcessorList() | |
logits_processor.append( | |
AutoImageTokenGenerationProcessor(tokenizer=tokenizer, num_img_gen_tokens=num_img_gen_tokens)) | |
if prompt is not None: | |
input_ids = tokenizer(prompt, return_tensors="pt").input_ids | |
if isinstance(input_ids, list): | |
input_ids = torch.tensor(input_ids) | |
input_ids = input_ids.to(device=device) | |
input_embeds = self.llm.get_input_embeddings()(input_ids) | |
bz, sq, dim = input_embeds.shape | |
if image_embeds is not None: | |
assert embeds_cmp_mask is not None and ids_cmp_mask is not None | |
with torch.no_grad(): | |
image_embeds_lm = self.input_resampler(image_embeds) | |
input_embeds[ids_cmp_mask] = image_embeds_lm[embeds_cmp_mask].view(-1, dim) | |
generation_config = { | |
'temperature': temperature, | |
'num_beams': num_beams, | |
'max_new_tokens': max_new_tokens, | |
'top_p': top_p, | |
'do_sample': False | |
} | |
# generate_ids = self.llm.generate(input_ids=input_ids, **generation_config) | |
output = self.llm.generate(input_ids=input_ids, | |
inputs_embeds=input_embeds, | |
output_hidden_states=True, | |
return_dict_in_generate=True, | |
logits_processor=logits_processor, | |
past_key_values=past_key_values, | |
# position_ids=position_ids, | |
**generation_config) | |
# self.llm.base_model.model.position_ids = self.llm.base_model.model.position_ids[:, :-2] | |
output_past_key_values = self.llm.past_key_values | |
generate_ids = output.sequences[0][input_ids.shape[1]:] | |
generate_id_list = generate_ids.tolist() | |
boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0] | |
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0] | |
attn_weights = () | |
def merge_attn_weights(attn_weights): | |
merged_attn_weights = attn_weights[0] | |
# Iterate through the remaining attention weight tensors | |
for i, attn_weight in enumerate(attn_weights[1:]): | |
merged_attn_weights = F.pad(merged_attn_weights, (0, 1), "constant", float('nan')) | |
# Concatenate the expanded tensor to the merged tensor along the kv_len dimension | |
merged_attn_weights = torch.cat([merged_attn_weights, attn_weight], dim=1) | |
return merged_attn_weights | |
if output.attentions is not None: | |
# for idx in [0, 1, 2, 9, 16, 23, 31]: | |
for idx in range(32): | |
attn_weights += ( | |
merge_attn_weights([output.attentions[j][idx] for j in range(len(output.attentions))]),) | |
# for skip image multi turn kvcache | |
last_hidden_states = torch.cat([hidden_state[-1] for hidden_state in output.hidden_states], dim=1) | |
if past_key_values is None: | |
last_hidden_states = last_hidden_states[0, input_ids.shape[1]:, :] | |
eoi_indices = torch.where(generate_ids == eoi_token_id)[0].tolist() | |
else: | |
last_hidden_states = last_hidden_states[0, :, :] | |
hidden_len = last_hidden_states.shape[0] | |
eoi_indices = torch.where(output.sequences[0][-hidden_len:] == eoi_token_id)[0].tolist() | |
num_gen_imgs = 1 if len(eoi_indices) > 0 else 0 | |
text_mask = torch.ones_like(generate_ids, dtype=torch.bool) | |
has_img_output = num_gen_imgs > 0 | |
if has_img_output: | |
img_gen_feats = [] | |
img_gen_feats.append(last_hidden_states[eoi_indices[-1] - num_img_gen_tokens:eoi_indices[-1]]) | |
text_mask[eoi_indices[-1] - num_img_gen_tokens:eoi_indices[-1]] = False | |
# for eoi_idx in eoi_indices: | |
# img_gen_feats.append(last_hidden_states[eoi_idx - num_img_gen_tokens:eoi_idx]) | |
# text_mask[eoi_idx - num_img_gen_tokens:eoi_idx] = False | |
img_gen_feats = torch.stack(img_gen_feats) | |
img_gen_feat = self.output_resampler(img_gen_feats) | |
else: | |
img_gen_feat = None | |
text_mask[generate_ids == boi_token_id] = False | |
# generate_ids = generate_ids[text_mask] | |
generate_text = tokenizer.decode(generate_ids, skip_special_tokens=False) | |
return { | |
'text': generate_text, | |
'generate_ids': generate_ids, | |
'has_img_output': has_img_output, | |
'img_gen_feat': img_gen_feat, | |
'num_gen_imgs': num_gen_imgs, | |
'attn_weights': attn_weights, | |
'past_key_values': output_past_key_values | |
} | |
def from_pretrained(cls, llm, input_resampler, output_resampler, pretrained_model_path=None, **kwargs): | |
model = cls(llm=llm, input_resampler=input_resampler, output_resampler=output_resampler, **kwargs) | |
if pretrained_model_path is not None: | |
# Check if the path is intended for Hugging Face Hub | |
if 'TencentARC/SEED-Story' in pretrained_model_path: | |
# Load from a specific subfolder within the Hugging Face repository | |
ckpt = AutoModel.from_pretrained(pretrained_model_path, subfolder="seed_story/george_sft") | |
missing, unexpected = model.load_state_dict(ckpt.state_dict(), strict=False) | |
print('Agent model, missing keys: ', len(missing), 'unexpected keys:', len(unexpected)) | |
else: | |
# For local path loading | |
ckpt = torch.load(pretrained_model_path, map_location='cpu') | |
missing, unexpected = model.load_state_dict(ckpt, strict=False) | |
print('Agent model, missing keys: ', len(missing), 'unexpected keys:', len(unexpected)) | |
return model | |
class SEEDLLaMAAlignGeneration(nn.Module): | |
def __init__(self, llm, output_resampler) -> None: | |
super().__init__() | |
self.llm = llm | |
self.output_resampler = output_resampler | |
# self.rec_loss_scale = rec_loss_scale | |
self.llm.requires_grad_(False) | |
def forward(self, input_ids, attention_mask, labels, image_embeds, embeds_gen_mask, embeds_cmp_mask, ids_gen_mask, | |
ids_cmp_mask): | |
input_embeds = self.llm.get_input_embeddings()(input_ids) # bz x seq_len x dim, 4 x 160 x 4096 | |
bz, sq, dim = input_embeds.shape | |
output_lm = self.llm(attention_mask=attention_mask, | |
inputs_embeds=input_embeds, | |
labels=labels, | |
output_hidden_states=True, | |
return_dict=True) | |
last_hidden_state = output_lm.hidden_states[-1] # 4 x 160 x 4096 | |
target_embeds = image_embeds[embeds_gen_mask] # num_imgs_gen_target x nq_in x dim_in, 2 x 256 x 4096 | |
num_imgs_for_rec = target_embeds.shape[0] | |
output_image_embeds = last_hidden_state[ids_gen_mask].view(num_imgs_for_rec, -1, | |
dim) # 128 x 4096 -> 2 x 64 x 4096 | |
recon_image_embeds = self.output_resampler(output_image_embeds) # 2 x 256 x 4096 | |
rec_loss = cosine_loss(recon_image_embeds, target_embeds) | |
return {'total_loss': rec_loss, 'rec_loss': rec_loss} | |
def from_pretrained(cls, llm, output_resampler, pretrained_model_path=None, **kwargs): | |
model = cls(llm=llm, output_resampler=output_resampler, **kwargs) | |
if pretrained_model_path is not None: | |
ckpt = torch.load(pretrained_model_path, map_location='cpu') | |
missing, unexpected = model.load_state_dict(ckpt, strict=False) | |
print('agent model, missing keys: ', len(missing), 'unexpected keys:', len(unexpected)) | |
return model | |
def generate(self, | |
tokenizer, | |
input_ids=None, | |
temperature=0.7, | |
num_beams=1, | |
max_new_tokens=120, | |
num_img_gen_tokens=64, | |
top_p=0.5, | |
dtype=torch.float16, | |
device='cuda'): | |
input_ids = input_ids.to(device=device) | |
input_embeds = self.llm.get_input_embeddings()(input_ids) # bz x seq_len x dim, 4 x 160 x 4096 | |
generation_config = { | |
'temperature': temperature, | |
'num_beams': num_beams, | |
'max_new_tokens': max_new_tokens, | |
'top_p': top_p, | |
'do_sample': False | |
} | |
output = self.llm.generate(input_ids=input_ids, | |
inputs_embeds=input_embeds, | |
output_hidden_states=True, | |
return_dict_in_generate=True, | |
**generation_config) | |
generate_ids = output.sequences[0][input_ids.shape[1]:] | |
generate_id_list = generate_ids.tolist() | |
# boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0] | |
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0] | |
# print('output ids: ', generate_ids, generate_ids.shape) | |
# last_hidden_states = output.hidden_states[-1] | |
last_hidden_states = torch.cat([hidden_state[-1] for hidden_state in output.hidden_states], | |
dim=1)[:1, input_ids.shape[1]:, :] | |
has_img_output = eoi_token_id in generate_id_list | |
if has_img_output: | |
# print(boi_token_id, generate_id_list, generate_id_list.index(boi_token_id)) | |
# boi_idx = generate_id_list.index(boi_token_id) | |
eoi_idx = generate_id_list.index(eoi_token_id) | |
print(len(generate_id_list), generate_id_list, eoi_idx) | |
# print(generate_id_list[boi_idx + 1:boi_idx + 1 + num_img_gen_tokens]) | |
# img_gen_feat = last_hidden_states[:, eoi_idx - num_img_gen_tokens:eoi_idx] | |
img_gen_feat = last_hidden_states[:, 0:eoi_idx] | |
print('img_gen_feat', img_gen_feat.shape, last_hidden_states.shape, num_img_gen_tokens) | |
img_gen_feat = self.output_resampler(img_gen_feat) | |
else: | |
img_gen_feat = None | |
generate_text = tokenizer.decode(generate_ids, skip_special_tokens=False) | |
# print('output keys: ', output.keys()) | |
return {'text': generate_text, 'has_img_output': has_img_output, 'img_gen_feat': img_gen_feat} | |