Spaces:
Runtime error
Runtime error
File size: 15,820 Bytes
674d663 0447610 674d663 0447610 674d663 0447610 674d663 0447610 674d663 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
import torch
import torch.nn as nn
from transformers import LlamaForCausalLM, LlamaConfig
from transformers import LogitsProcessor, LogitsProcessorList
from transformers import AutoModel
from .generation import AutoImageTokenGenerationProcessor
import torch.nn.functional as F
BOI_TOKEN = '<img>'
EOI_TOKEN = '</img>'
IMG_TOKEN = '<img_{:05d}>'
def cosine_loss(rec, target):
target = target / target.norm(dim=-1, keepdim=True)
rec = rec / rec.norm(dim=-1, keepdim=True)
rec_loss = (1 - (target * rec).sum(-1)).mean()
return rec_loss
class ContinuousLVLM(nn.Module):
def __init__(self, llm, input_resampler, output_resampler, lm_loss_scale=1.0, rec_loss_scale=1.0) -> None:
super().__init__()
self.llm = llm
self.input_resampler = input_resampler
self.output_resampler = output_resampler
self.lm_loss_scale = lm_loss_scale
self.rec_loss_scale = rec_loss_scale
# input_resampler.requires_grad_(False)
# output_resampler.requires_grad_(False)
def forward(self, input_ids, attention_mask, labels, image_embeds, embeds_gen_mask, embeds_cmp_mask, ids_gen_mask,
ids_cmp_mask, return_recon_image_embeds=False):
input_embeds = self.llm.get_input_embeddings()(input_ids) # bz x seq_len x dim, 4 x 160 x 4096
bz, sq, dim = input_embeds.shape
if image_embeds is not None:
image_embeds_lm = self.input_resampler(image_embeds) # num_imgs_in_batch x nq x dim, 4 x 64 x 4096
has_image = True
else:
image_embeds = torch.randn(bz, self.output_resampler.num_queries,
self.output_resampler.embed_dim).to(input_embeds.device,
dtype=input_embeds.dtype)
image_embeds_lm = self.input_resampler(image_embeds)
has_image = False
has_image_input = has_image and embeds_cmp_mask.sum().item() > 0
has_image_output = has_image and embeds_gen_mask.sum().item() > 0
if has_image_input:
input_embeds[ids_cmp_mask] = image_embeds_lm[embeds_cmp_mask].view(-1, dim) # eg, 128 x 4096
# zero_loss = 0.0
else:
min_bz = min(input_embeds.shape[0], image_embeds_lm.shape[0])
input_embeds[:min_bz, :self.input_resampler.
num_queries, :] = input_embeds[:min_bz, :self.input_resampler.
num_queries, :] + 0.0 * image_embeds_lm[:min_bz, :, :]
output_lm = self.llm(attention_mask=attention_mask,
inputs_embeds=input_embeds,
labels=labels,
output_hidden_states=True,
return_dict=True)
lm_loss = output_lm['loss']
last_hidden_state = output_lm.hidden_states[-1] # 4 x 160 x 4096
if has_image_output:
target_embeds = image_embeds[embeds_gen_mask] # num_imgs_gen_target x nq_in x dim_in, 2 x 256 x 4096
num_imgs_for_rec = target_embeds.shape[0]
output_image_embeds = last_hidden_state[ids_gen_mask].view(num_imgs_for_rec, -1,
dim) # 128 x 4096 -> 2 x 64 x 4096
recon_image_embeds = self.output_resampler(output_image_embeds) # 2 x 256 x 4096
rec_loss = cosine_loss(recon_image_embeds, target_embeds)
else:
output_image_embeds = torch.randn(bz, self.input_resampler.num_queries,
self.input_resampler.embed_dim).to(input_embeds.device,
dtype=input_embeds.dtype)
recon_image_embeds = self.output_resampler(output_image_embeds)
target_embeds = torch.randn(bz, self.output_resampler.num_queries,
self.output_resampler.embed_dim).to(input_embeds.device,
dtype=input_embeds.dtype)
rec_loss = cosine_loss(recon_image_embeds, target_embeds) * 0.0
total_loss = self.lm_loss_scale * lm_loss + self.rec_loss_scale * rec_loss
if return_recon_image_embeds and has_image_output:
return {'total_loss': total_loss, 'lm_loss': lm_loss, 'rec_loss': rec_loss,
'recon_image_embeds': recon_image_embeds}
else:
return {'total_loss': total_loss, 'lm_loss': lm_loss, 'rec_loss': rec_loss}
def generate(self,
tokenizer,
prompt=None,
input_ids=None,
image_embeds=None,
embeds_cmp_mask=None,
ids_cmp_mask=None,
logits_processor=None,
num_img_gen_tokens=64,
temperature=0.7,
num_beams=1,
max_new_tokens=120,
top_p=0.5,
past_key_values=None,
# position_ids=None,
dtype=torch.float16,
device='cuda'):
if logits_processor is None:
logits_processor = LogitsProcessorList()
logits_processor.append(
AutoImageTokenGenerationProcessor(tokenizer=tokenizer, num_img_gen_tokens=num_img_gen_tokens))
if prompt is not None:
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
if isinstance(input_ids, list):
input_ids = torch.tensor(input_ids)
input_ids = input_ids.to(device=device)
input_embeds = self.llm.get_input_embeddings()(input_ids)
bz, sq, dim = input_embeds.shape
if image_embeds is not None:
assert embeds_cmp_mask is not None and ids_cmp_mask is not None
with torch.no_grad():
image_embeds_lm = self.input_resampler(image_embeds)
input_embeds[ids_cmp_mask] = image_embeds_lm[embeds_cmp_mask].view(-1, dim)
generation_config = {
'temperature': temperature,
'num_beams': num_beams,
'max_new_tokens': max_new_tokens,
'top_p': top_p,
'do_sample': False
}
# generate_ids = self.llm.generate(input_ids=input_ids, **generation_config)
output = self.llm.generate(input_ids=input_ids,
inputs_embeds=input_embeds,
output_hidden_states=True,
return_dict_in_generate=True,
logits_processor=logits_processor,
past_key_values=past_key_values,
# position_ids=position_ids,
**generation_config)
# self.llm.base_model.model.position_ids = self.llm.base_model.model.position_ids[:, :-2]
output_past_key_values = self.llm.past_key_values
generate_ids = output.sequences[0][input_ids.shape[1]:]
generate_id_list = generate_ids.tolist()
boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]
attn_weights = ()
def merge_attn_weights(attn_weights):
merged_attn_weights = attn_weights[0]
# Iterate through the remaining attention weight tensors
for i, attn_weight in enumerate(attn_weights[1:]):
merged_attn_weights = F.pad(merged_attn_weights, (0, 1), "constant", float('nan'))
# Concatenate the expanded tensor to the merged tensor along the kv_len dimension
merged_attn_weights = torch.cat([merged_attn_weights, attn_weight], dim=1)
return merged_attn_weights
if output.attentions is not None:
# for idx in [0, 1, 2, 9, 16, 23, 31]:
for idx in range(32):
attn_weights += (
merge_attn_weights([output.attentions[j][idx] for j in range(len(output.attentions))]),)
# for skip image multi turn kvcache
last_hidden_states = torch.cat([hidden_state[-1] for hidden_state in output.hidden_states], dim=1)
if past_key_values is None:
last_hidden_states = last_hidden_states[0, input_ids.shape[1]:, :]
eoi_indices = torch.where(generate_ids == eoi_token_id)[0].tolist()
else:
last_hidden_states = last_hidden_states[0, :, :]
hidden_len = last_hidden_states.shape[0]
eoi_indices = torch.where(output.sequences[0][-hidden_len:] == eoi_token_id)[0].tolist()
num_gen_imgs = 1 if len(eoi_indices) > 0 else 0
text_mask = torch.ones_like(generate_ids, dtype=torch.bool)
has_img_output = num_gen_imgs > 0
if has_img_output:
img_gen_feats = []
img_gen_feats.append(last_hidden_states[eoi_indices[-1] - num_img_gen_tokens:eoi_indices[-1]])
text_mask[eoi_indices[-1] - num_img_gen_tokens:eoi_indices[-1]] = False
# for eoi_idx in eoi_indices:
# img_gen_feats.append(last_hidden_states[eoi_idx - num_img_gen_tokens:eoi_idx])
# text_mask[eoi_idx - num_img_gen_tokens:eoi_idx] = False
img_gen_feats = torch.stack(img_gen_feats)
img_gen_feat = self.output_resampler(img_gen_feats)
else:
img_gen_feat = None
text_mask[generate_ids == boi_token_id] = False
# generate_ids = generate_ids[text_mask]
generate_text = tokenizer.decode(generate_ids, skip_special_tokens=False)
return {
'text': generate_text,
'generate_ids': generate_ids,
'has_img_output': has_img_output,
'img_gen_feat': img_gen_feat,
'num_gen_imgs': num_gen_imgs,
'attn_weights': attn_weights,
'past_key_values': output_past_key_values
}
@classmethod
def from_pretrained(cls, llm, input_resampler, output_resampler, pretrained_model_path=None, **kwargs):
model = cls(llm=llm, input_resampler=input_resampler, output_resampler=output_resampler, **kwargs)
if pretrained_model_path is not None:
# Check if the path is intended for Hugging Face Hub
if 'TencentARC/SEED-Story' in pretrained_model_path:
# Load from a specific subfolder within the Hugging Face repository
ckpt = AutoModel.from_pretrained(pretrained_model_path, subfolder="seed_story/george_sft")
missing, unexpected = model.load_state_dict(ckpt.state_dict(), strict=False)
print('Agent model, missing keys: ', len(missing), 'unexpected keys:', len(unexpected))
else:
# For local path loading
ckpt = torch.load(pretrained_model_path, map_location='cpu')
missing, unexpected = model.load_state_dict(ckpt, strict=False)
print('Agent model, missing keys: ', len(missing), 'unexpected keys:', len(unexpected))
return model
class SEEDLLaMAAlignGeneration(nn.Module):
def __init__(self, llm, output_resampler) -> None:
super().__init__()
self.llm = llm
self.output_resampler = output_resampler
# self.rec_loss_scale = rec_loss_scale
self.llm.requires_grad_(False)
def forward(self, input_ids, attention_mask, labels, image_embeds, embeds_gen_mask, embeds_cmp_mask, ids_gen_mask,
ids_cmp_mask):
input_embeds = self.llm.get_input_embeddings()(input_ids) # bz x seq_len x dim, 4 x 160 x 4096
bz, sq, dim = input_embeds.shape
output_lm = self.llm(attention_mask=attention_mask,
inputs_embeds=input_embeds,
labels=labels,
output_hidden_states=True,
return_dict=True)
last_hidden_state = output_lm.hidden_states[-1] # 4 x 160 x 4096
target_embeds = image_embeds[embeds_gen_mask] # num_imgs_gen_target x nq_in x dim_in, 2 x 256 x 4096
num_imgs_for_rec = target_embeds.shape[0]
output_image_embeds = last_hidden_state[ids_gen_mask].view(num_imgs_for_rec, -1,
dim) # 128 x 4096 -> 2 x 64 x 4096
recon_image_embeds = self.output_resampler(output_image_embeds) # 2 x 256 x 4096
rec_loss = cosine_loss(recon_image_embeds, target_embeds)
return {'total_loss': rec_loss, 'rec_loss': rec_loss}
@classmethod
def from_pretrained(cls, llm, output_resampler, pretrained_model_path=None, **kwargs):
model = cls(llm=llm, output_resampler=output_resampler, **kwargs)
if pretrained_model_path is not None:
ckpt = torch.load(pretrained_model_path, map_location='cpu')
missing, unexpected = model.load_state_dict(ckpt, strict=False)
print('agent model, missing keys: ', len(missing), 'unexpected keys:', len(unexpected))
return model
def generate(self,
tokenizer,
input_ids=None,
temperature=0.7,
num_beams=1,
max_new_tokens=120,
num_img_gen_tokens=64,
top_p=0.5,
dtype=torch.float16,
device='cuda'):
input_ids = input_ids.to(device=device)
input_embeds = self.llm.get_input_embeddings()(input_ids) # bz x seq_len x dim, 4 x 160 x 4096
generation_config = {
'temperature': temperature,
'num_beams': num_beams,
'max_new_tokens': max_new_tokens,
'top_p': top_p,
'do_sample': False
}
output = self.llm.generate(input_ids=input_ids,
inputs_embeds=input_embeds,
output_hidden_states=True,
return_dict_in_generate=True,
**generation_config)
generate_ids = output.sequences[0][input_ids.shape[1]:]
generate_id_list = generate_ids.tolist()
# boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]
# print('output ids: ', generate_ids, generate_ids.shape)
# last_hidden_states = output.hidden_states[-1]
last_hidden_states = torch.cat([hidden_state[-1] for hidden_state in output.hidden_states],
dim=1)[:1, input_ids.shape[1]:, :]
has_img_output = eoi_token_id in generate_id_list
if has_img_output:
# print(boi_token_id, generate_id_list, generate_id_list.index(boi_token_id))
# boi_idx = generate_id_list.index(boi_token_id)
eoi_idx = generate_id_list.index(eoi_token_id)
print(len(generate_id_list), generate_id_list, eoi_idx)
# print(generate_id_list[boi_idx + 1:boi_idx + 1 + num_img_gen_tokens])
# img_gen_feat = last_hidden_states[:, eoi_idx - num_img_gen_tokens:eoi_idx]
img_gen_feat = last_hidden_states[:, 0:eoi_idx]
print('img_gen_feat', img_gen_feat.shape, last_hidden_states.shape, num_img_gen_tokens)
img_gen_feat = self.output_resampler(img_gen_feat)
else:
img_gen_feat = None
generate_text = tokenizer.decode(generate_ids, skip_special_tokens=False)
# print('output keys: ', output.keys())
return {'text': generate_text, 'has_img_output': has_img_output, 'img_gen_feat': img_gen_feat}
|