Spaces:
Running
on
Zero
Running
on
Zero
# Copyright 2023-present the HuggingFace Inc. team. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import annotations | |
import math | |
import warnings | |
from dataclasses import asdict | |
from enum import Enum | |
from typing import Optional, Union | |
import torch | |
import torch.nn as nn | |
from torch.nn.init import _calculate_correct_fan | |
from tqdm import tqdm | |
from transformers.pytorch_utils import Conv1D | |
from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists | |
from peft.utils import ( | |
TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING, | |
ModulesToSaveWrapper, | |
_get_submodules, | |
) | |
from ..tuners_utils import _maybe_include_all_linear_layers | |
from .buffer_dict import BufferDict | |
from .config import VeraConfig | |
from .layer import Linear, VeraLayer | |
def _kaiming_init( | |
tensor_or_shape: Union[torch.Tensor, tuple[int, ...]], | |
generator: torch.Generator, | |
) -> torch.Tensor: | |
""" | |
Kaiming Uniform Initialisation adapted to accept a `torch.Generator` object for PRNG. | |
Args: | |
tensor_or_shape (`Union[torch.Tensor, tuple[int, ...]]`): | |
Tensor to initialise, or shape of new tensor to create and then initialise. | |
generator: (`torch.Generator`): | |
Generator object that manages the state of the PRNG algorithm in use. | |
Returns: | |
`torch.Tensor`: The initialised tensor. | |
""" | |
if isinstance(tensor_or_shape, tuple): | |
tensor = torch.empty(tensor_or_shape) | |
else: | |
tensor = tensor_or_shape | |
fan = _calculate_correct_fan(tensor, "fan_in") | |
gain = math.sqrt(2) | |
std = gain / math.sqrt(fan) | |
bound = math.sqrt(3.0) * std | |
with torch.no_grad(): | |
return tensor.uniform_(-bound, bound, generator=generator) | |
class VeraModel(BaseTuner): | |
""" | |
Creates Vector-based Random Matrix Adaptation (Vera) model from a pretrained transformers model. | |
Args: | |
model ([`~transformers.PreTrainedModel`]): The model to be adapted. | |
config ([`VeraConfig`]): The configuration of the Vera model. | |
adapter_name (`str`): The name of the adapter, defaults to `"default"`. | |
Returns: | |
`torch.nn.Module`: The Vera model. | |
Example: | |
```py | |
>>> from transformers import AutoModelForCausalLM | |
>>> from peft import VeraConfig, get_peft_model | |
>>> base_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m") | |
>>> config = VeraConfig(r=128) | |
>>> model = get_peft_model(base_model, config) | |
``` | |
**Attributes**: | |
- **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted. | |
- **peft_config** ([`VeraConfig`]): The configuration of the Vera model. | |
""" | |
prefix: str = "vera_lambda" | |
def __init__(self, model, config, adapter_name) -> None: | |
super().__init__(model, config, adapter_name) | |
def _find_first_dim(self, config) -> tuple[int, int]: | |
""" | |
Finds the first linear layer that has been wrapped with Vera, and extract the input and output dimension. | |
This will be used for determining the size of the shared vera_A and vera_B matrices. | |
This will throw an error if there are multiple layers of the same type with different shapes. | |
""" | |
model_config = getattr(self.model, "config", {"model_type": "custom"}) | |
if hasattr(model_config, "to_dict"): | |
model_config = model_config.to_dict() | |
peft_config = self._prepare_adapter_config(config, model_config) | |
peft_config = _maybe_include_all_linear_layers(peft_config, self.model) | |
first_shape = None | |
for key, module in self.model.named_modules(): | |
if not self._check_target_module_exists(peft_config, key): | |
continue | |
if isinstance(module, (nn.Linear, Conv1D)): | |
module_shape = tuple(module.weight.shape) | |
if isinstance(module, Conv1D): | |
module_shape = module_shape[::-1] | |
else: | |
continue | |
if first_shape is None: | |
first_shape = module_shape | |
continue | |
if module_shape != first_shape: | |
raise ValueError( | |
"Multiple target layers with different dimensions were specified. VeRA only supports a " | |
f"single dimension size. Expected shape {first_shape}, got {module_shape}." | |
) | |
if first_shape is None: | |
msg = "No layers types compatible with VeRA were found. Please check `peft_config.target_modules`." | |
raise ValueError(msg) | |
return first_shape | |
def _init_vera_A_vera_B(self, config: VeraConfig, adapter_name: str) -> None: | |
first_linear_out_dim, first_linear_in_dim = self._find_first_dim(config) | |
# use of persistent to exclude vera_A and vera_B from the state dict if we choose not to save them. | |
self.vera_A = BufferDict({}, persistent=config.save_projection) | |
self.vera_B = BufferDict({}, persistent=config.save_projection) | |
# deterministic init of vera_A and vera_B if we know the key | |
generator = torch.Generator(device="cpu").manual_seed(config.projection_prng_key) | |
vera_A = _kaiming_init((config.r, first_linear_in_dim), generator=generator) | |
vera_B = _kaiming_init((first_linear_out_dim, config.r), generator=generator) | |
self.vera_A[adapter_name] = vera_A | |
self.vera_B[adapter_name] = vera_B | |
def _pre_injection_hook(self, model: nn.Module, config: VeraConfig, adapter_name: str) -> None: | |
self._init_vera_A_vera_B(config, adapter_name) | |
def _check_new_adapter_config(self, config: VeraConfig) -> None: | |
""" | |
A helper method to check the config when a new adapter is being added. | |
Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters. | |
""" | |
# the below todo is copied from LoRA | |
# TODO: there should be a check if any of the existing adapters actually has bias != "none", or else the check | |
# does not fully correspond to the error message. | |
if (len(self.peft_config) > 1) and (config.bias != "none"): | |
raise ValueError( | |
f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, " | |
"set bias to 'none' for all adapters." | |
) | |
for existing_config in self.peft_config.values(): | |
if existing_config is config: | |
# skip the current config | |
continue | |
if existing_config.projection_prng_key != config.projection_prng_key: | |
raise ValueError( | |
f"Vera PRNG initialisation key must be the same for all adapters. Got {config.projection_prng_key=} but " | |
f"previous config had {existing_config.projection_prng_key}." | |
) | |
save_project_unique_values = sorted({config.save_projection for config in self.peft_config.values()}) | |
if len(save_project_unique_values) > 1: | |
raise ValueError( | |
"VeRA projection weights must be saved for all adapters or none, but got multiple different values: " | |
f"{save_project_unique_values}" | |
) | |
def _check_target_module_exists(vera_config, key): | |
return check_target_module_exists(vera_config, key) | |
def _create_and_replace( | |
self, | |
vera_config, | |
adapter_name, | |
target, | |
target_name, | |
parent, | |
current_key, | |
**optional_kwargs, | |
): | |
if current_key is None: | |
raise ValueError("Current Key shouldn't be `None`") | |
r = vera_config.r | |
bias = hasattr(target, "bias") and target.bias is not None | |
kwargs = { | |
"r": r, | |
"vera_dropout": vera_config.vera_dropout, | |
"fan_in_fan_out": vera_config.fan_in_fan_out, | |
"init_weights": vera_config.init_weights, | |
} | |
kwargs["bias"] = bias | |
# TODO: add quantization support | |
if isinstance(target, Linear): | |
target.update_layer( | |
adapter_name, | |
self.vera_A, | |
self.vera_B, | |
r, | |
vera_config.vera_dropout, | |
vera_config.init_weights, | |
d_initial=vera_config.d_initial, | |
) | |
else: | |
new_module = self._create_new_module(vera_config, self.vera_A, self.vera_B, adapter_name, target, **kwargs) | |
if adapter_name not in self.active_adapter: | |
# adding an additional adapter: it is not automatically trainable | |
new_module.requires_grad_(False) | |
self._replace_module(parent, target_name, new_module, target) | |
def _replace_module(parent, child_name, new_module, child): | |
setattr(parent, child_name, new_module) | |
# It's not necessary to set requires_grad here, as that is handled by | |
# _mark_only_adapters_as_trainable | |
# child layer wraps the original module, unpack it | |
if hasattr(child, "base_layer"): | |
child = child.base_layer | |
if not hasattr(new_module, "base_layer"): | |
new_module.weight = child.weight | |
if hasattr(child, "bias"): | |
new_module.bias = child.bias | |
if getattr(child, "state", None) is not None: | |
if hasattr(new_module, "base_layer"): | |
new_module.base_layer.state = child.state | |
else: | |
new_module.state = child.state | |
new_module.to(child.weight.device) | |
# dispatch to correct device | |
for name, module in new_module.named_modules(): | |
if "vera_" in name: | |
module.to(child.weight.device) | |
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None: | |
for n, p in model.named_parameters(): | |
if self.prefix not in n: | |
p.requires_grad = False | |
for active_adapter in self.active_adapters: | |
bias = self.peft_config[active_adapter].bias | |
if bias == "none": | |
continue | |
if bias == "all": | |
for n, p in model.named_parameters(): | |
if "bias" in n: | |
p.requires_grad = True | |
elif bias == "vera_only": | |
for m in model.modules(): | |
if isinstance(m, VeraLayer) and hasattr(m, "bias") and m.bias is not None: | |
m.bias.requires_grad = True | |
else: | |
raise NotImplementedError(f"Requested bias: {bias}, is not implemented.") | |
def _create_new_module(vera_config, vera_A, vera_B, adapter_name, target, **kwargs): | |
bias = kwargs.pop("bias", False) | |
if isinstance(target, BaseTunerLayer): | |
target_base_layer = target.get_base_layer() | |
else: | |
target_base_layer = target | |
if isinstance(target_base_layer, torch.nn.Linear): | |
if kwargs["fan_in_fan_out"]: | |
warnings.warn( | |
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. " | |
"Setting fan_in_fan_out to False." | |
) | |
kwargs["fan_in_fan_out"] = vera_config.fan_in_fan_out = False | |
elif isinstance(target_base_layer, Conv1D): | |
kwargs["is_target_conv_1d_layer"] = True | |
if not kwargs["fan_in_fan_out"]: | |
warnings.warn( | |
"fan_in_fan_out is set to False but the target module is `Conv1D`. " | |
"Setting fan_in_fan_out to True." | |
) | |
kwargs["fan_in_fan_out"] = vera_config.fan_in_fan_out = True | |
else: | |
raise ValueError( | |
f"Target module {target} is not supported. Currently, only the following modules are supported: " | |
"`torch.nn.Linear`, `transformers.pytorch_utils.Conv1D`." | |
) | |
new_module = Linear( | |
target, | |
vera_A, | |
vera_B, | |
adapter_name, | |
bias=bias, | |
d_initial=vera_config.d_initial, | |
**kwargs, | |
) | |
return new_module | |
def __getattr__(self, name: str): | |
"""Forward missing attributes to the wrapped module.""" | |
try: | |
return super().__getattr__(name) # defer to nn.Module's logic | |
except AttributeError: | |
return getattr(self.model, name) | |
def get_peft_config_as_dict(self, inference: bool = False): | |
config_dict = {} | |
for key, value in self.peft_config.items(): | |
config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()} | |
if inference: | |
config["inference_mode"] = True | |
config_dict[key] = config | |
return config | |
def _set_adapter_layers(self, enabled=True): | |
for module in self.model.modules(): | |
if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)): | |
module.enable_adapters(enabled) | |
def enable_adapter_layers(self): | |
self._set_adapter_layers(enabled=True) | |
def disable_adapter_layers(self): | |
for active_adapter in self.active_adapters: | |
val = self.peft_config[active_adapter].bias | |
if val != "none": | |
msg = ( | |
f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same " | |
"output as the the base model would without adaption." | |
) | |
warnings.warn(msg) | |
self._set_adapter_layers(enabled=False) | |
def set_adapter(self, adapter_name): | |
for module in self.model.modules(): | |
if isinstance(module, VeraLayer): | |
if module.merged: | |
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.") | |
module.unmerge() | |
module.set_adapter(adapter_name) | |
self.active_adapter = adapter_name | |
def _prepare_adapter_config(peft_config, model_config): | |
if peft_config.target_modules is None: | |
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING: | |
raise ValueError("Please specify `target_modules` in `peft_config`") | |
peft_config.target_modules = set( | |
TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING[model_config["model_type"]] | |
) | |
return peft_config | |
def _unload_and_optionally_merge( | |
self, | |
merge=True, | |
progressbar: bool = False, | |
safe_merge: bool = False, | |
adapter_names: Optional[list[str]] = None, | |
): | |
# we cannot use self.prefix as we want to include non-trainable vera parameters | |
key_list = [key for key, _ in self.model.named_modules() if "vera" not in key] | |
desc = "Unloading " + ("and merging " if merge else "") + "model" | |
for key in tqdm(key_list, disable=not progressbar, desc=desc): | |
try: | |
parent, target, target_name = _get_submodules(self.model, key) | |
except AttributeError: | |
continue | |
if hasattr(target, "base_layer"): | |
if merge: | |
target.merge(safe_merge=safe_merge, adapter_names=adapter_names) | |
self._replace_module(parent, target_name, target.get_base_layer(), target) | |
elif isinstance(target, ModulesToSaveWrapper): | |
# save any additional trainable modules part of `modules_to_save` | |
setattr(parent, target_name, target.modules_to_save[target.active_adapter]) | |
return self.model | |
def delete_adapter(self, adapter_name: str): | |
""" | |
Deletes an existing adapter. | |
Args: | |
adapter_name (str): Name of the adapter to be deleted. | |
""" | |
if adapter_name not in list(self.peft_config.keys()): | |
raise ValueError(f"Adapter {adapter_name} does not exist") | |
del self.peft_config[adapter_name] | |
# we cannot use self.prefix as we want to include non-trainable vera parameters | |
key_list = [key for key, _ in self.model.named_modules() if "vera" not in key] | |
new_adapter = None | |
for key in key_list: | |
_, target, _ = _get_submodules(self.model, key) | |
if isinstance(target, VeraLayer): | |
target.delete_adapter(adapter_name) | |
if new_adapter is None: | |
new_adapter = target.active_adapter[:] | |
self.active_adapter = new_adapter or [] | |
def merge_and_unload( | |
self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None | |
): | |
r""" | |
This method merges the Vera layers into the base model. This is needed if someone wants to use the base model | |
as a standalone model. | |
Args: | |
progressbar (`bool`): | |
whether to show a progressbar indicating the unload and merge process | |
safe_merge (`bool`): | |
whether to activate the safe merging check to check if there is any potential Nan in the adapter | |
weights | |
adapter_names (`list[str]`, *optional*): | |
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults | |
to `None`. | |
Example: | |
```py | |
>>> from transformers import AutoModelForCausalLM | |
>>> from peft import PeftModel | |
>>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b") | |
>>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample" | |
>>> model = PeftModel.from_pretrained(base_model, peft_model_id) | |
>>> merged_model = model.merge_and_unload() | |
``` | |
""" | |
return self._unload_and_optionally_merge( | |
progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names | |
) | |
def unload(self): | |
""" | |
Gets back the base model by removing all the Vera modules without merging. This gives back the original base | |
model. | |
""" | |
return self._unload_and_optionally_merge(merge=False) | |