File size: 18,863 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import annotations

import math
import warnings
from dataclasses import asdict
from enum import Enum
from typing import Optional, Union

import torch
import torch.nn as nn
from torch.nn.init import _calculate_correct_fan
from tqdm import tqdm
from transformers.pytorch_utils import Conv1D

from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists
from peft.utils import (
    TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING,
    ModulesToSaveWrapper,
    _get_submodules,
)

from ..tuners_utils import _maybe_include_all_linear_layers
from .buffer_dict import BufferDict
from .config import VeraConfig
from .layer import Linear, VeraLayer


def _kaiming_init(
    tensor_or_shape: Union[torch.Tensor, tuple[int, ...]],
    generator: torch.Generator,
) -> torch.Tensor:
    """
    Kaiming Uniform Initialisation adapted to accept a `torch.Generator` object for PRNG.

    Args:
        tensor_or_shape (`Union[torch.Tensor, tuple[int, ...]]`):
            Tensor to initialise, or shape of new tensor to create and then initialise.
        generator: (`torch.Generator`):
            Generator object that manages the state of the PRNG algorithm in use.

    Returns:
        `torch.Tensor`: The initialised tensor.
    """
    if isinstance(tensor_or_shape, tuple):
        tensor = torch.empty(tensor_or_shape)
    else:
        tensor = tensor_or_shape
    fan = _calculate_correct_fan(tensor, "fan_in")
    gain = math.sqrt(2)
    std = gain / math.sqrt(fan)
    bound = math.sqrt(3.0) * std

    with torch.no_grad():
        return tensor.uniform_(-bound, bound, generator=generator)


class VeraModel(BaseTuner):
    """
    Creates Vector-based Random Matrix Adaptation (Vera) model from a pretrained transformers model.

    Args:
        model ([`~transformers.PreTrainedModel`]): The model to be adapted.
        config ([`VeraConfig`]): The configuration of the Vera model.
        adapter_name (`str`): The name of the adapter, defaults to `"default"`.

    Returns:
        `torch.nn.Module`: The Vera model.

    Example:

        ```py
        >>> from transformers import AutoModelForCausalLM
        >>> from peft import VeraConfig, get_peft_model

        >>> base_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
        >>> config = VeraConfig(r=128)
        >>> model = get_peft_model(base_model, config)
        ```

    **Attributes**:
        - **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted.
        - **peft_config** ([`VeraConfig`]): The configuration of the Vera model.
    """

    prefix: str = "vera_lambda"

    def __init__(self, model, config, adapter_name) -> None:
        super().__init__(model, config, adapter_name)

    def _find_first_dim(self, config) -> tuple[int, int]:
        """
        Finds the first linear layer that has been wrapped with Vera, and extract the input and output dimension.

        This will be used for determining the size of the shared vera_A and vera_B matrices.

        This will throw an error if there are multiple layers of the same type with different shapes.
        """
        model_config = getattr(self.model, "config", {"model_type": "custom"})
        if hasattr(model_config, "to_dict"):
            model_config = model_config.to_dict()

        peft_config = self._prepare_adapter_config(config, model_config)
        peft_config = _maybe_include_all_linear_layers(peft_config, self.model)

        first_shape = None
        for key, module in self.model.named_modules():
            if not self._check_target_module_exists(peft_config, key):
                continue

            if isinstance(module, (nn.Linear, Conv1D)):
                module_shape = tuple(module.weight.shape)
                if isinstance(module, Conv1D):
                    module_shape = module_shape[::-1]
            else:
                continue

            if first_shape is None:
                first_shape = module_shape
                continue

            if module_shape != first_shape:
                raise ValueError(
                    "Multiple target layers with different dimensions were specified. VeRA only supports a "
                    f"single dimension size. Expected shape {first_shape}, got {module_shape}."
                )

        if first_shape is None:
            msg = "No layers types compatible with VeRA were found. Please check `peft_config.target_modules`."
            raise ValueError(msg)

        return first_shape

    def _init_vera_A_vera_B(self, config: VeraConfig, adapter_name: str) -> None:
        first_linear_out_dim, first_linear_in_dim = self._find_first_dim(config)

        # use of persistent to exclude vera_A and vera_B from the state dict if we choose not to save them.
        self.vera_A = BufferDict({}, persistent=config.save_projection)
        self.vera_B = BufferDict({}, persistent=config.save_projection)

        # deterministic init of vera_A and vera_B if we know the key
        generator = torch.Generator(device="cpu").manual_seed(config.projection_prng_key)
        vera_A = _kaiming_init((config.r, first_linear_in_dim), generator=generator)
        vera_B = _kaiming_init((first_linear_out_dim, config.r), generator=generator)
        self.vera_A[adapter_name] = vera_A
        self.vera_B[adapter_name] = vera_B

    def _pre_injection_hook(self, model: nn.Module, config: VeraConfig, adapter_name: str) -> None:
        self._init_vera_A_vera_B(config, adapter_name)

    def _check_new_adapter_config(self, config: VeraConfig) -> None:
        """
        A helper method to check the config when a new adapter is being added.

        Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters.

        """
        # the below todo is copied from LoRA
        # TODO: there should be a check if any of the existing adapters actually has bias != "none", or else the check
        # does not fully correspond to the error message.
        if (len(self.peft_config) > 1) and (config.bias != "none"):
            raise ValueError(
                f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, "
                "set bias to 'none' for all adapters."
            )

        for existing_config in self.peft_config.values():
            if existing_config is config:
                # skip the current config
                continue

            if existing_config.projection_prng_key != config.projection_prng_key:
                raise ValueError(
                    f"Vera PRNG initialisation key must be the same for all adapters. Got {config.projection_prng_key=} but "
                    f"previous config had {existing_config.projection_prng_key}."
                )

        save_project_unique_values = sorted({config.save_projection for config in self.peft_config.values()})
        if len(save_project_unique_values) > 1:
            raise ValueError(
                "VeRA projection weights must be saved for all adapters or none, but got multiple different values: "
                f"{save_project_unique_values}"
            )

    @staticmethod
    def _check_target_module_exists(vera_config, key):
        return check_target_module_exists(vera_config, key)

    def _create_and_replace(
        self,
        vera_config,
        adapter_name,
        target,
        target_name,
        parent,
        current_key,
        **optional_kwargs,
    ):
        if current_key is None:
            raise ValueError("Current Key shouldn't be `None`")

        r = vera_config.r
        bias = hasattr(target, "bias") and target.bias is not None
        kwargs = {
            "r": r,
            "vera_dropout": vera_config.vera_dropout,
            "fan_in_fan_out": vera_config.fan_in_fan_out,
            "init_weights": vera_config.init_weights,
        }
        kwargs["bias"] = bias
        # TODO: add quantization support

        if isinstance(target, Linear):
            target.update_layer(
                adapter_name,
                self.vera_A,
                self.vera_B,
                r,
                vera_config.vera_dropout,
                vera_config.init_weights,
                d_initial=vera_config.d_initial,
            )
        else:
            new_module = self._create_new_module(vera_config, self.vera_A, self.vera_B, adapter_name, target, **kwargs)
            if adapter_name not in self.active_adapter:
                # adding an additional adapter: it is not automatically trainable
                new_module.requires_grad_(False)
            self._replace_module(parent, target_name, new_module, target)

    @staticmethod
    def _replace_module(parent, child_name, new_module, child):
        setattr(parent, child_name, new_module)
        # It's not necessary to set requires_grad here, as that is handled by
        # _mark_only_adapters_as_trainable

        # child layer wraps the original module, unpack it
        if hasattr(child, "base_layer"):
            child = child.base_layer

        if not hasattr(new_module, "base_layer"):
            new_module.weight = child.weight
            if hasattr(child, "bias"):
                new_module.bias = child.bias

        if getattr(child, "state", None) is not None:
            if hasattr(new_module, "base_layer"):
                new_module.base_layer.state = child.state
            else:
                new_module.state = child.state
            new_module.to(child.weight.device)

        # dispatch to correct device
        for name, module in new_module.named_modules():
            if "vera_" in name:
                module.to(child.weight.device)

    def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
        for n, p in model.named_parameters():
            if self.prefix not in n:
                p.requires_grad = False

        for active_adapter in self.active_adapters:
            bias = self.peft_config[active_adapter].bias
            if bias == "none":
                continue

            if bias == "all":
                for n, p in model.named_parameters():
                    if "bias" in n:
                        p.requires_grad = True
            elif bias == "vera_only":
                for m in model.modules():
                    if isinstance(m, VeraLayer) and hasattr(m, "bias") and m.bias is not None:
                        m.bias.requires_grad = True
            else:
                raise NotImplementedError(f"Requested bias: {bias}, is not implemented.")

    @staticmethod
    def _create_new_module(vera_config, vera_A, vera_B, adapter_name, target, **kwargs):
        bias = kwargs.pop("bias", False)

        if isinstance(target, BaseTunerLayer):
            target_base_layer = target.get_base_layer()
        else:
            target_base_layer = target

        if isinstance(target_base_layer, torch.nn.Linear):
            if kwargs["fan_in_fan_out"]:
                warnings.warn(
                    "fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
                    "Setting fan_in_fan_out to False."
                )
                kwargs["fan_in_fan_out"] = vera_config.fan_in_fan_out = False
        elif isinstance(target_base_layer, Conv1D):
            kwargs["is_target_conv_1d_layer"] = True
            if not kwargs["fan_in_fan_out"]:
                warnings.warn(
                    "fan_in_fan_out is set to False but the target module is `Conv1D`. "
                    "Setting fan_in_fan_out to True."
                )
                kwargs["fan_in_fan_out"] = vera_config.fan_in_fan_out = True
        else:
            raise ValueError(
                f"Target module {target} is not supported. Currently, only the following modules are supported: "
                "`torch.nn.Linear`, `transformers.pytorch_utils.Conv1D`."
            )
        new_module = Linear(
            target,
            vera_A,
            vera_B,
            adapter_name,
            bias=bias,
            d_initial=vera_config.d_initial,
            **kwargs,
        )

        return new_module

    def __getattr__(self, name: str):
        """Forward missing attributes to the wrapped module."""
        try:
            return super().__getattr__(name)  # defer to nn.Module's logic
        except AttributeError:
            return getattr(self.model, name)

    def get_peft_config_as_dict(self, inference: bool = False):
        config_dict = {}
        for key, value in self.peft_config.items():
            config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()}
            if inference:
                config["inference_mode"] = True
        config_dict[key] = config
        return config

    def _set_adapter_layers(self, enabled=True):
        for module in self.model.modules():
            if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)):
                module.enable_adapters(enabled)

    def enable_adapter_layers(self):
        self._set_adapter_layers(enabled=True)

    def disable_adapter_layers(self):
        for active_adapter in self.active_adapters:
            val = self.peft_config[active_adapter].bias
            if val != "none":
                msg = (
                    f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same "
                    "output as the the base model would without adaption."
                )
                warnings.warn(msg)
        self._set_adapter_layers(enabled=False)

    def set_adapter(self, adapter_name):
        for module in self.model.modules():
            if isinstance(module, VeraLayer):
                if module.merged:
                    warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
                    module.unmerge()
                module.set_adapter(adapter_name)
        self.active_adapter = adapter_name

    @staticmethod
    def _prepare_adapter_config(peft_config, model_config):
        if peft_config.target_modules is None:
            if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING:
                raise ValueError("Please specify `target_modules` in `peft_config`")
            peft_config.target_modules = set(
                TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING[model_config["model_type"]]
            )
        return peft_config

    def _unload_and_optionally_merge(
        self,
        merge=True,
        progressbar: bool = False,
        safe_merge: bool = False,
        adapter_names: Optional[list[str]] = None,
    ):
        # we cannot use self.prefix as we want to include non-trainable vera parameters
        key_list = [key for key, _ in self.model.named_modules() if "vera" not in key]
        desc = "Unloading " + ("and merging " if merge else "") + "model"
        for key in tqdm(key_list, disable=not progressbar, desc=desc):
            try:
                parent, target, target_name = _get_submodules(self.model, key)
            except AttributeError:
                continue

            if hasattr(target, "base_layer"):
                if merge:
                    target.merge(safe_merge=safe_merge, adapter_names=adapter_names)

                self._replace_module(parent, target_name, target.get_base_layer(), target)
            elif isinstance(target, ModulesToSaveWrapper):
                # save any additional trainable modules part of `modules_to_save`
                setattr(parent, target_name, target.modules_to_save[target.active_adapter])

        return self.model

    def delete_adapter(self, adapter_name: str):
        """
        Deletes an existing adapter.

        Args:
            adapter_name (str): Name of the adapter to be deleted.
        """
        if adapter_name not in list(self.peft_config.keys()):
            raise ValueError(f"Adapter {adapter_name} does not exist")
        del self.peft_config[adapter_name]

        # we cannot use self.prefix as we want to include non-trainable vera parameters
        key_list = [key for key, _ in self.model.named_modules() if "vera" not in key]
        new_adapter = None
        for key in key_list:
            _, target, _ = _get_submodules(self.model, key)
            if isinstance(target, VeraLayer):
                target.delete_adapter(adapter_name)
                if new_adapter is None:
                    new_adapter = target.active_adapter[:]

        self.active_adapter = new_adapter or []

    def merge_and_unload(
        self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None
    ):
        r"""
        This method merges the Vera layers into the base model. This is needed if someone wants to use the base model
        as a standalone model.

        Args:
            progressbar (`bool`):
                whether to show a progressbar indicating the unload and merge process
            safe_merge (`bool`):
                whether to activate the safe merging check to check if there is any potential Nan in the adapter
                weights
            adapter_names (`list[str]`, *optional*):
                The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
                to `None`.

        Example:

        ```py
        >>> from transformers import AutoModelForCausalLM
        >>> from peft import PeftModel

        >>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b")
        >>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample"
        >>> model = PeftModel.from_pretrained(base_model, peft_model_id)
        >>> merged_model = model.merge_and_unload()
        ```
        """
        return self._unload_and_optionally_merge(
            progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names
        )

    def unload(self):
        """
        Gets back the base model by removing all the Vera modules without merging. This gives back the original base
        model.
        """
        return self._unload_and_optionally_merge(merge=False)