Spaces:
Running
on
Zero
Running
on
Zero
File size: 18,863 Bytes
d711508 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import math
import warnings
from dataclasses import asdict
from enum import Enum
from typing import Optional, Union
import torch
import torch.nn as nn
from torch.nn.init import _calculate_correct_fan
from tqdm import tqdm
from transformers.pytorch_utils import Conv1D
from peft.tuners.tuners_utils import BaseTuner, BaseTunerLayer, check_target_module_exists
from peft.utils import (
TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING,
ModulesToSaveWrapper,
_get_submodules,
)
from ..tuners_utils import _maybe_include_all_linear_layers
from .buffer_dict import BufferDict
from .config import VeraConfig
from .layer import Linear, VeraLayer
def _kaiming_init(
tensor_or_shape: Union[torch.Tensor, tuple[int, ...]],
generator: torch.Generator,
) -> torch.Tensor:
"""
Kaiming Uniform Initialisation adapted to accept a `torch.Generator` object for PRNG.
Args:
tensor_or_shape (`Union[torch.Tensor, tuple[int, ...]]`):
Tensor to initialise, or shape of new tensor to create and then initialise.
generator: (`torch.Generator`):
Generator object that manages the state of the PRNG algorithm in use.
Returns:
`torch.Tensor`: The initialised tensor.
"""
if isinstance(tensor_or_shape, tuple):
tensor = torch.empty(tensor_or_shape)
else:
tensor = tensor_or_shape
fan = _calculate_correct_fan(tensor, "fan_in")
gain = math.sqrt(2)
std = gain / math.sqrt(fan)
bound = math.sqrt(3.0) * std
with torch.no_grad():
return tensor.uniform_(-bound, bound, generator=generator)
class VeraModel(BaseTuner):
"""
Creates Vector-based Random Matrix Adaptation (Vera) model from a pretrained transformers model.
Args:
model ([`~transformers.PreTrainedModel`]): The model to be adapted.
config ([`VeraConfig`]): The configuration of the Vera model.
adapter_name (`str`): The name of the adapter, defaults to `"default"`.
Returns:
`torch.nn.Module`: The Vera model.
Example:
```py
>>> from transformers import AutoModelForCausalLM
>>> from peft import VeraConfig, get_peft_model
>>> base_model = AutoModelForCausalLM.from_pretrained("facebook/opt-125m")
>>> config = VeraConfig(r=128)
>>> model = get_peft_model(base_model, config)
```
**Attributes**:
- **model** ([`~transformers.PreTrainedModel`]) -- The model to be adapted.
- **peft_config** ([`VeraConfig`]): The configuration of the Vera model.
"""
prefix: str = "vera_lambda"
def __init__(self, model, config, adapter_name) -> None:
super().__init__(model, config, adapter_name)
def _find_first_dim(self, config) -> tuple[int, int]:
"""
Finds the first linear layer that has been wrapped with Vera, and extract the input and output dimension.
This will be used for determining the size of the shared vera_A and vera_B matrices.
This will throw an error if there are multiple layers of the same type with different shapes.
"""
model_config = getattr(self.model, "config", {"model_type": "custom"})
if hasattr(model_config, "to_dict"):
model_config = model_config.to_dict()
peft_config = self._prepare_adapter_config(config, model_config)
peft_config = _maybe_include_all_linear_layers(peft_config, self.model)
first_shape = None
for key, module in self.model.named_modules():
if not self._check_target_module_exists(peft_config, key):
continue
if isinstance(module, (nn.Linear, Conv1D)):
module_shape = tuple(module.weight.shape)
if isinstance(module, Conv1D):
module_shape = module_shape[::-1]
else:
continue
if first_shape is None:
first_shape = module_shape
continue
if module_shape != first_shape:
raise ValueError(
"Multiple target layers with different dimensions were specified. VeRA only supports a "
f"single dimension size. Expected shape {first_shape}, got {module_shape}."
)
if first_shape is None:
msg = "No layers types compatible with VeRA were found. Please check `peft_config.target_modules`."
raise ValueError(msg)
return first_shape
def _init_vera_A_vera_B(self, config: VeraConfig, adapter_name: str) -> None:
first_linear_out_dim, first_linear_in_dim = self._find_first_dim(config)
# use of persistent to exclude vera_A and vera_B from the state dict if we choose not to save them.
self.vera_A = BufferDict({}, persistent=config.save_projection)
self.vera_B = BufferDict({}, persistent=config.save_projection)
# deterministic init of vera_A and vera_B if we know the key
generator = torch.Generator(device="cpu").manual_seed(config.projection_prng_key)
vera_A = _kaiming_init((config.r, first_linear_in_dim), generator=generator)
vera_B = _kaiming_init((first_linear_out_dim, config.r), generator=generator)
self.vera_A[adapter_name] = vera_A
self.vera_B[adapter_name] = vera_B
def _pre_injection_hook(self, model: nn.Module, config: VeraConfig, adapter_name: str) -> None:
self._init_vera_A_vera_B(config, adapter_name)
def _check_new_adapter_config(self, config: VeraConfig) -> None:
"""
A helper method to check the config when a new adapter is being added.
Raise a ValueError if there is something wrong with the config or if it conflicts with existing adapters.
"""
# the below todo is copied from LoRA
# TODO: there should be a check if any of the existing adapters actually has bias != "none", or else the check
# does not fully correspond to the error message.
if (len(self.peft_config) > 1) and (config.bias != "none"):
raise ValueError(
f"{self.__class__.__name__} supports only 1 adapter with bias. When using multiple adapters, "
"set bias to 'none' for all adapters."
)
for existing_config in self.peft_config.values():
if existing_config is config:
# skip the current config
continue
if existing_config.projection_prng_key != config.projection_prng_key:
raise ValueError(
f"Vera PRNG initialisation key must be the same for all adapters. Got {config.projection_prng_key=} but "
f"previous config had {existing_config.projection_prng_key}."
)
save_project_unique_values = sorted({config.save_projection for config in self.peft_config.values()})
if len(save_project_unique_values) > 1:
raise ValueError(
"VeRA projection weights must be saved for all adapters or none, but got multiple different values: "
f"{save_project_unique_values}"
)
@staticmethod
def _check_target_module_exists(vera_config, key):
return check_target_module_exists(vera_config, key)
def _create_and_replace(
self,
vera_config,
adapter_name,
target,
target_name,
parent,
current_key,
**optional_kwargs,
):
if current_key is None:
raise ValueError("Current Key shouldn't be `None`")
r = vera_config.r
bias = hasattr(target, "bias") and target.bias is not None
kwargs = {
"r": r,
"vera_dropout": vera_config.vera_dropout,
"fan_in_fan_out": vera_config.fan_in_fan_out,
"init_weights": vera_config.init_weights,
}
kwargs["bias"] = bias
# TODO: add quantization support
if isinstance(target, Linear):
target.update_layer(
adapter_name,
self.vera_A,
self.vera_B,
r,
vera_config.vera_dropout,
vera_config.init_weights,
d_initial=vera_config.d_initial,
)
else:
new_module = self._create_new_module(vera_config, self.vera_A, self.vera_B, adapter_name, target, **kwargs)
if adapter_name not in self.active_adapter:
# adding an additional adapter: it is not automatically trainable
new_module.requires_grad_(False)
self._replace_module(parent, target_name, new_module, target)
@staticmethod
def _replace_module(parent, child_name, new_module, child):
setattr(parent, child_name, new_module)
# It's not necessary to set requires_grad here, as that is handled by
# _mark_only_adapters_as_trainable
# child layer wraps the original module, unpack it
if hasattr(child, "base_layer"):
child = child.base_layer
if not hasattr(new_module, "base_layer"):
new_module.weight = child.weight
if hasattr(child, "bias"):
new_module.bias = child.bias
if getattr(child, "state", None) is not None:
if hasattr(new_module, "base_layer"):
new_module.base_layer.state = child.state
else:
new_module.state = child.state
new_module.to(child.weight.device)
# dispatch to correct device
for name, module in new_module.named_modules():
if "vera_" in name:
module.to(child.weight.device)
def _mark_only_adapters_as_trainable(self, model: nn.Module) -> None:
for n, p in model.named_parameters():
if self.prefix not in n:
p.requires_grad = False
for active_adapter in self.active_adapters:
bias = self.peft_config[active_adapter].bias
if bias == "none":
continue
if bias == "all":
for n, p in model.named_parameters():
if "bias" in n:
p.requires_grad = True
elif bias == "vera_only":
for m in model.modules():
if isinstance(m, VeraLayer) and hasattr(m, "bias") and m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError(f"Requested bias: {bias}, is not implemented.")
@staticmethod
def _create_new_module(vera_config, vera_A, vera_B, adapter_name, target, **kwargs):
bias = kwargs.pop("bias", False)
if isinstance(target, BaseTunerLayer):
target_base_layer = target.get_base_layer()
else:
target_base_layer = target
if isinstance(target_base_layer, torch.nn.Linear):
if kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to True but the target module is `torch.nn.Linear`. "
"Setting fan_in_fan_out to False."
)
kwargs["fan_in_fan_out"] = vera_config.fan_in_fan_out = False
elif isinstance(target_base_layer, Conv1D):
kwargs["is_target_conv_1d_layer"] = True
if not kwargs["fan_in_fan_out"]:
warnings.warn(
"fan_in_fan_out is set to False but the target module is `Conv1D`. "
"Setting fan_in_fan_out to True."
)
kwargs["fan_in_fan_out"] = vera_config.fan_in_fan_out = True
else:
raise ValueError(
f"Target module {target} is not supported. Currently, only the following modules are supported: "
"`torch.nn.Linear`, `transformers.pytorch_utils.Conv1D`."
)
new_module = Linear(
target,
vera_A,
vera_B,
adapter_name,
bias=bias,
d_initial=vera_config.d_initial,
**kwargs,
)
return new_module
def __getattr__(self, name: str):
"""Forward missing attributes to the wrapped module."""
try:
return super().__getattr__(name) # defer to nn.Module's logic
except AttributeError:
return getattr(self.model, name)
def get_peft_config_as_dict(self, inference: bool = False):
config_dict = {}
for key, value in self.peft_config.items():
config = {k: v.value if isinstance(v, Enum) else v for k, v in asdict(value).items()}
if inference:
config["inference_mode"] = True
config_dict[key] = config
return config
def _set_adapter_layers(self, enabled=True):
for module in self.model.modules():
if isinstance(module, (BaseTunerLayer, ModulesToSaveWrapper)):
module.enable_adapters(enabled)
def enable_adapter_layers(self):
self._set_adapter_layers(enabled=True)
def disable_adapter_layers(self):
for active_adapter in self.active_adapters:
val = self.peft_config[active_adapter].bias
if val != "none":
msg = (
f"Careful, disabling adapter layers with bias configured to be '{val}' does not produce the same "
"output as the the base model would without adaption."
)
warnings.warn(msg)
self._set_adapter_layers(enabled=False)
def set_adapter(self, adapter_name):
for module in self.model.modules():
if isinstance(module, VeraLayer):
if module.merged:
warnings.warn("Adapter cannot be set when the model is merged. Unmerging the model first.")
module.unmerge()
module.set_adapter(adapter_name)
self.active_adapter = adapter_name
@staticmethod
def _prepare_adapter_config(peft_config, model_config):
if peft_config.target_modules is None:
if model_config["model_type"] not in TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING:
raise ValueError("Please specify `target_modules` in `peft_config`")
peft_config.target_modules = set(
TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING[model_config["model_type"]]
)
return peft_config
def _unload_and_optionally_merge(
self,
merge=True,
progressbar: bool = False,
safe_merge: bool = False,
adapter_names: Optional[list[str]] = None,
):
# we cannot use self.prefix as we want to include non-trainable vera parameters
key_list = [key for key, _ in self.model.named_modules() if "vera" not in key]
desc = "Unloading " + ("and merging " if merge else "") + "model"
for key in tqdm(key_list, disable=not progressbar, desc=desc):
try:
parent, target, target_name = _get_submodules(self.model, key)
except AttributeError:
continue
if hasattr(target, "base_layer"):
if merge:
target.merge(safe_merge=safe_merge, adapter_names=adapter_names)
self._replace_module(parent, target_name, target.get_base_layer(), target)
elif isinstance(target, ModulesToSaveWrapper):
# save any additional trainable modules part of `modules_to_save`
setattr(parent, target_name, target.modules_to_save[target.active_adapter])
return self.model
def delete_adapter(self, adapter_name: str):
"""
Deletes an existing adapter.
Args:
adapter_name (str): Name of the adapter to be deleted.
"""
if adapter_name not in list(self.peft_config.keys()):
raise ValueError(f"Adapter {adapter_name} does not exist")
del self.peft_config[adapter_name]
# we cannot use self.prefix as we want to include non-trainable vera parameters
key_list = [key for key, _ in self.model.named_modules() if "vera" not in key]
new_adapter = None
for key in key_list:
_, target, _ = _get_submodules(self.model, key)
if isinstance(target, VeraLayer):
target.delete_adapter(adapter_name)
if new_adapter is None:
new_adapter = target.active_adapter[:]
self.active_adapter = new_adapter or []
def merge_and_unload(
self, progressbar: bool = False, safe_merge: bool = False, adapter_names: Optional[list[str]] = None
):
r"""
This method merges the Vera layers into the base model. This is needed if someone wants to use the base model
as a standalone model.
Args:
progressbar (`bool`):
whether to show a progressbar indicating the unload and merge process
safe_merge (`bool`):
whether to activate the safe merging check to check if there is any potential Nan in the adapter
weights
adapter_names (`list[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
Example:
```py
>>> from transformers import AutoModelForCausalLM
>>> from peft import PeftModel
>>> base_model = AutoModelForCausalLM.from_pretrained("tiiuae/falcon-40b")
>>> peft_model_id = "smangrul/falcon-40B-int4-peft-lora-sfttrainer-sample"
>>> model = PeftModel.from_pretrained(base_model, peft_model_id)
>>> merged_model = model.merge_and_unload()
```
"""
return self._unload_and_optionally_merge(
progressbar=progressbar, safe_merge=safe_merge, adapter_names=adapter_names
)
def unload(self):
"""
Gets back the base model by removing all the Vera modules without merging. This gives back the original base
model.
"""
return self._unload_and_optionally_merge(merge=False)
|