Yw22's picture
init demo
d711508
raw
history blame
10.6 kB
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.pytorch_utils import Conv1D
from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from peft.utils.other import transpose
from .buffer_dict import BufferDict
class VeraLayer(BaseTunerLayer):
# List all names of layers that may contain adapter weights
adapter_layer_names = ("vera_lambda_b", "vera_lambda_d")
other_param_names = ("vera_A", "vera_B")
def __init__(self, base_layer: nn.Module, **kwargs):
self.base_layer = base_layer
self.r = {}
self.vera_dropout = nn.ModuleDict({})
# For storing vector scale
self.vera_lambda_b = nn.ParameterDict({})
self.vera_lambda_d = nn.ParameterDict({})
# Stores a reference to the vera_A/B BufferDict.
# Set to `None` otherwise to avoid computation with random weights
self.vera_A: Optional[BufferDict] = None
self.vera_B: Optional[BufferDict] = None
# Mark the weight as unmerged
self._disable_adapters = False
self.merged_adapters = []
base_layer = self.get_base_layer()
if isinstance(base_layer, nn.Linear):
in_features, out_features = base_layer.in_features, base_layer.out_features
elif isinstance(base_layer, Conv1D):
in_features, out_features = (
base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape
)
self.in_features = in_features
self.out_features = out_features
self.kwargs = kwargs
@property
def merged(self) -> bool:
return bool(self.merged_adapters)
def update_layer(
self,
adapter_name,
vera_A: BufferDict,
vera_B: BufferDict,
r,
vera_dropout,
init_weights,
d_initial: float = 0.1,
):
if r <= 0:
raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
self.r[adapter_name] = r
if vera_dropout > 0.0:
vera_dropout_layer = nn.Dropout(p=vera_dropout)
else:
vera_dropout_layer = nn.Identity()
self.vera_dropout.update(nn.ModuleDict({adapter_name: vera_dropout_layer}))
# Actual trainable parameters
self.vera_lambda_b[adapter_name] = nn.Parameter(torch.ones(self.out_features), requires_grad=True)
self.vera_lambda_d[adapter_name] = nn.Parameter(torch.randn(r), requires_grad=True)
# non trainable references to vera_A/B buffers
self.vera_A = vera_A
self.vera_B = vera_B
if adapter_name not in vera_A:
# This means that this is not the first VeRA adapter. We have to add an entry in the dict for this adapter.
if len(self.vera_A) < 1:
raise ValueError(
"The `vera_A` and `vera_B` buffers are empty. This should not happen. Please report this issue."
)
# we can take any of the existing adapter's parameters, as they should all be identical
vera_A_param = list(self.vera_A.values())[0]
vera_B_param = list(self.vera_B.values())[0]
self.vera_A[adapter_name] = vera_A_param
self.vera_B[adapter_name] = vera_B_param
if init_weights:
self.reset_vera_parameters(adapter_name, d_initial=d_initial)
weight = getattr(self.get_base_layer(), "weight", None)
if weight is not None:
# the layer is already completely initialized, this is an update
if weight.dtype.is_floating_point or weight.dtype.is_complex:
self.to(weight.device, dtype=weight.dtype)
else:
self.to(weight.device)
self.set_adapter(self.active_adapters)
def reset_vera_parameters(self, adapter_name, d_initial: float = 0.1):
if adapter_name in self.vera_lambda_d.keys():
with torch.no_grad():
nn.init.zeros_(self.vera_lambda_d[adapter_name]).fill_(d_initial)
nn.init.zeros_(self.vera_lambda_b[adapter_name])
class Linear(nn.Linear, VeraLayer):
# Vera implemented in a dense layer
def __init__(
self,
base_layer,
vera_A: BufferDict,
vera_B: BufferDict,
adapter_name: str,
r: int = 0,
vera_dropout: float = 0.0,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
is_target_conv_1d_layer: bool = False,
init_weights: bool = True,
d_initial: float = 0.1,
**kwargs,
) -> None:
# this gets the init from nn.Linear's super perspective, i.e. nn.Module.__init__, which should always be called
super(nn.Linear, self).__init__()
VeraLayer.__init__(self, base_layer, **kwargs)
self.fan_in_fan_out = fan_in_fan_out
self._active_adapter = adapter_name
self.update_layer(adapter_name, vera_A, vera_B, r, vera_dropout, init_weights, d_initial=d_initial)
self.is_target_conv_1d_layer = is_target_conv_1d_layer
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
for active_adapter in adapter_names:
if active_adapter in self.vera_lambda_d.keys():
base_layer = self.get_base_layer()
if safe_merge:
# Note that safe_merge will be slower than the normal merge
# because of the copy operation.
orig_weights = base_layer.weight.data.clone()
orig_weights += self.get_delta_weight(active_adapter)
if not torch.isfinite(orig_weights).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
base_layer.weight.data = orig_weights
else:
base_layer.weight.data += self.get_delta_weight(active_adapter)
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter in self.vera_lambda_d.keys():
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)
def get_delta_weight(self, adapter) -> torch.Tensor:
"""
Compute the delta weight for the given adapter.
Args:
adapter (str):
The name of the adapter for which the delta weight should be computed.
"""
vera_A = self.vera_A[adapter]
vera_B = self.vera_B[adapter]
device = vera_B.device
dtype = vera_B.dtype
# In case users wants to merge the adapter weights that are in
# float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
# float16 because the `@` and matmul operation in general is not supported in torch + cpu + fp16.
cast_to_fp32 = device.type == "cpu" and dtype == torch.float16
lambda_d = self.vera_lambda_d[adapter]
lambda_b = self.vera_lambda_b[adapter]
if cast_to_fp32:
vera_A = vera_A.float()
vera_B = vera_B.float()
lambda_d = lambda_d.float()
lambda_b = lambda_b.float()
lambda_b = lambda_b.unsqueeze(-1)
lambda_d = lambda_d.unsqueeze(-1)
output_tensor = transpose((lambda_b * vera_B) @ (lambda_d * vera_A), self.fan_in_fan_out)
if cast_to_fp32:
output_tensor = output_tensor.to(dtype=dtype)
# cast back the weights
# TODO: why?
self.vera_lambda_d[adapter].data = lambda_d.to(dtype)
self.vera_lambda_b[adapter].data = lambda_b.to(dtype)
return output_tensor
def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
previous_dtype = x.dtype
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
result = self.base_layer(x, *args, **kwargs)
for active_adapter in self.active_adapters:
if active_adapter not in self.vera_lambda_d.keys():
continue
lambda_d = self.vera_lambda_d[active_adapter]
lambda_b = self.vera_lambda_b[active_adapter]
vera_A = self.vera_A[active_adapter]
vera_B = self.vera_B[active_adapter]
dropout = self.vera_dropout[active_adapter]
x = x.to(lambda_d.dtype)
result = result + lambda_b * F.linear(lambda_d * F.linear(dropout(x), vera_A), vera_B)
result = result.to(previous_dtype)
return result