File size: 10,624 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from typing import List, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers.pytorch_utils import Conv1D

from peft.tuners.tuners_utils import BaseTunerLayer, check_adapters_to_merge
from peft.utils.other import transpose

from .buffer_dict import BufferDict


class VeraLayer(BaseTunerLayer):
    # List all names of layers that may contain adapter weights
    adapter_layer_names = ("vera_lambda_b", "vera_lambda_d")
    other_param_names = ("vera_A", "vera_B")

    def __init__(self, base_layer: nn.Module, **kwargs):
        self.base_layer = base_layer
        self.r = {}
        self.vera_dropout = nn.ModuleDict({})

        # For storing vector scale
        self.vera_lambda_b = nn.ParameterDict({})
        self.vera_lambda_d = nn.ParameterDict({})

        # Stores a reference to the vera_A/B BufferDict.
        # Set to `None` otherwise to avoid computation with random weights
        self.vera_A: Optional[BufferDict] = None
        self.vera_B: Optional[BufferDict] = None

        # Mark the weight as unmerged
        self._disable_adapters = False
        self.merged_adapters = []

        base_layer = self.get_base_layer()
        if isinstance(base_layer, nn.Linear):
            in_features, out_features = base_layer.in_features, base_layer.out_features
        elif isinstance(base_layer, Conv1D):
            in_features, out_features = (
                base_layer.weight.ds_shape if hasattr(base_layer.weight, "ds_shape") else base_layer.weight.shape
            )

        self.in_features = in_features
        self.out_features = out_features
        self.kwargs = kwargs

    @property
    def merged(self) -> bool:
        return bool(self.merged_adapters)

    def update_layer(
        self,
        adapter_name,
        vera_A: BufferDict,
        vera_B: BufferDict,
        r,
        vera_dropout,
        init_weights,
        d_initial: float = 0.1,
    ):
        if r <= 0:
            raise ValueError(f"`r` should be a positive integer value but the value passed is {r}")
        self.r[adapter_name] = r
        if vera_dropout > 0.0:
            vera_dropout_layer = nn.Dropout(p=vera_dropout)
        else:
            vera_dropout_layer = nn.Identity()

        self.vera_dropout.update(nn.ModuleDict({adapter_name: vera_dropout_layer}))
        # Actual trainable parameters
        self.vera_lambda_b[adapter_name] = nn.Parameter(torch.ones(self.out_features), requires_grad=True)
        self.vera_lambda_d[adapter_name] = nn.Parameter(torch.randn(r), requires_grad=True)

        # non trainable references to vera_A/B buffers
        self.vera_A = vera_A
        self.vera_B = vera_B
        if adapter_name not in vera_A:
            # This means that this is not the first VeRA adapter. We have to add an entry in the dict for this adapter.
            if len(self.vera_A) < 1:
                raise ValueError(
                    "The `vera_A` and `vera_B` buffers are empty. This should not happen. Please report this issue."
                )
            # we can take any of the existing adapter's parameters, as they should all be identical
            vera_A_param = list(self.vera_A.values())[0]
            vera_B_param = list(self.vera_B.values())[0]
            self.vera_A[adapter_name] = vera_A_param
            self.vera_B[adapter_name] = vera_B_param

        if init_weights:
            self.reset_vera_parameters(adapter_name, d_initial=d_initial)

        weight = getattr(self.get_base_layer(), "weight", None)
        if weight is not None:
            # the layer is already completely initialized, this is an update
            if weight.dtype.is_floating_point or weight.dtype.is_complex:
                self.to(weight.device, dtype=weight.dtype)
            else:
                self.to(weight.device)

        self.set_adapter(self.active_adapters)

    def reset_vera_parameters(self, adapter_name, d_initial: float = 0.1):
        if adapter_name in self.vera_lambda_d.keys():
            with torch.no_grad():
                nn.init.zeros_(self.vera_lambda_d[adapter_name]).fill_(d_initial)
                nn.init.zeros_(self.vera_lambda_b[adapter_name])


class Linear(nn.Linear, VeraLayer):
    # Vera implemented in a dense layer
    def __init__(
        self,
        base_layer,
        vera_A: BufferDict,
        vera_B: BufferDict,
        adapter_name: str,
        r: int = 0,
        vera_dropout: float = 0.0,
        fan_in_fan_out: bool = False,  # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
        is_target_conv_1d_layer: bool = False,
        init_weights: bool = True,
        d_initial: float = 0.1,
        **kwargs,
    ) -> None:
        # this gets the init from nn.Linear's super perspective, i.e. nn.Module.__init__, which should always be called
        super(nn.Linear, self).__init__()
        VeraLayer.__init__(self, base_layer, **kwargs)
        self.fan_in_fan_out = fan_in_fan_out

        self._active_adapter = adapter_name
        self.update_layer(adapter_name, vera_A, vera_B, r, vera_dropout, init_weights, d_initial=d_initial)
        self.is_target_conv_1d_layer = is_target_conv_1d_layer

    def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
        """
        Merge the active adapter weights into the base weights

        Args:
            safe_merge (`bool`, *optional*):
                If True, the merge operation will be performed in a copy of the original weights and check for NaNs
                before merging the weights. This is useful if you want to check if the merge operation will produce
                NaNs. Defaults to `False`.
            adapter_names (`List[str]`, *optional*):
                The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
                to `None`.
        """
        adapter_names = check_adapters_to_merge(self, adapter_names)
        if not adapter_names:
            # no adapter to merge
            return

        for active_adapter in adapter_names:
            if active_adapter in self.vera_lambda_d.keys():
                base_layer = self.get_base_layer()
                if safe_merge:
                    # Note that safe_merge will be slower than the normal merge
                    # because of the copy operation.
                    orig_weights = base_layer.weight.data.clone()

                    orig_weights += self.get_delta_weight(active_adapter)

                    if not torch.isfinite(orig_weights).all():
                        raise ValueError(
                            f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
                        )

                    base_layer.weight.data = orig_weights
                else:
                    base_layer.weight.data += self.get_delta_weight(active_adapter)
                self.merged_adapters.append(active_adapter)

    def unmerge(self) -> None:
        if not self.merged:
            warnings.warn("Already unmerged. Nothing to do.")
            return

        while len(self.merged_adapters) > 0:
            active_adapter = self.merged_adapters.pop()
            if active_adapter in self.vera_lambda_d.keys():
                self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)

    def get_delta_weight(self, adapter) -> torch.Tensor:
        """
        Compute the delta weight for the given adapter.

        Args:
            adapter (str):
                The name of the adapter for which the delta weight should be computed.
        """
        vera_A = self.vera_A[adapter]
        vera_B = self.vera_B[adapter]

        device = vera_B.device
        dtype = vera_B.dtype

        # In case users wants to merge the adapter weights that are in
        # float16 while being on CPU, we need to cast the weights to float32, perform the merge and then cast back to
        # float16 because the `@` and matmul operation in general is not supported in torch + cpu + fp16.
        cast_to_fp32 = device.type == "cpu" and dtype == torch.float16

        lambda_d = self.vera_lambda_d[adapter]
        lambda_b = self.vera_lambda_b[adapter]

        if cast_to_fp32:
            vera_A = vera_A.float()
            vera_B = vera_B.float()
            lambda_d = lambda_d.float()
            lambda_b = lambda_b.float()

        lambda_b = lambda_b.unsqueeze(-1)
        lambda_d = lambda_d.unsqueeze(-1)
        output_tensor = transpose((lambda_b * vera_B) @ (lambda_d * vera_A), self.fan_in_fan_out)

        if cast_to_fp32:
            output_tensor = output_tensor.to(dtype=dtype)

            # cast back the weights
            # TODO: why?
            self.vera_lambda_d[adapter].data = lambda_d.to(dtype)
            self.vera_lambda_b[adapter].data = lambda_b.to(dtype)

        return output_tensor

    def forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
        previous_dtype = x.dtype

        if self.disable_adapters:
            if self.merged:
                self.unmerge()
            result = self.base_layer(x, *args, **kwargs)
        elif self.merged:
            result = self.base_layer(x, *args, **kwargs)
        else:
            result = self.base_layer(x, *args, **kwargs)
            for active_adapter in self.active_adapters:
                if active_adapter not in self.vera_lambda_d.keys():
                    continue

                lambda_d = self.vera_lambda_d[active_adapter]
                lambda_b = self.vera_lambda_b[active_adapter]

                vera_A = self.vera_A[active_adapter]
                vera_B = self.vera_B[active_adapter]

                dropout = self.vera_dropout[active_adapter]
                x = x.to(lambda_d.dtype)
                result = result + lambda_b * F.linear(lambda_d * F.linear(dropout(x), vera_A), vera_B)

        result = result.to(previous_dtype)
        return result