Spaces:
Sleeping
Sleeping
File size: 6,912 Bytes
2e37cc0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
import argparse
import itertools
import json
import os
import random
import time
from functools import partial
import torch
import requests
from tqdm import tqdm
from transformers import AutoProcessor, Qwen2AudioForConditionalGeneration
from transformers.pipelines.audio_utils import ffmpeg_read
from sklearn.metrics import accuracy_score
ds_collections = {
'meld': {'path': 'ser/meld_eval.jsonl'}
}
class AudioDataset(torch.utils.data.Dataset):
def __init__(self, ds):
path = ds['path']
self.datas = open(path).readlines()
def __len__(self):
return len(self.datas)
def __getitem__(self, idx):
data = json.loads(self.datas[idx].strip())
audio = data['audio']
source = data['source']
prompt = "<|audio_bos|><|AUDIO|><|audio_eos|>"+data['prompt']
gt = data['gt']
return {
'audio': audio,
'prompt': prompt,
'source': source,
'gt': gt
}
def read_audio(audio_path):
if audio_path.startswith("http://") or audio_path.startswith("https://"):
# We need to actually check for a real protocol, otherwise it's impossible to use a local file
# like http_huggingface_co.png
inputs = requests.get(audio_path).content
else:
with open(audio_path, "rb") as f:
inputs = f.read()
return inputs
def collate_fn(inputs, processor):
input_texts = [_['prompt'] for _ in inputs]
source = [_['source'] for _ in inputs]
gt = [_['gt'] for _ in inputs]
audio_path = [_['audio'] for _ in inputs]
input_audios = [ffmpeg_read(read_audio(_['audio']), sampling_rate=processor.feature_extractor.sampling_rate) for _ in inputs]
inputs = processor(text=input_texts, audios=input_audios, sampling_rate=processor.feature_extractor.sampling_rate, return_tensors="pt", padding=True)
return inputs, audio_path, source, gt
class InferenceSampler(torch.utils.data.sampler.Sampler):
def __init__(self, size):
self._size = int(size)
assert size > 0
self._rank = torch.distributed.get_rank()
self._world_size = torch.distributed.get_world_size()
self._local_indices = self._get_local_indices(size, self._world_size,
self._rank)
@staticmethod
def _get_local_indices(total_size, world_size, rank):
shard_size = total_size // world_size
left = total_size % world_size
shard_sizes = [shard_size + int(r < left) for r in range(world_size)]
begin = sum(shard_sizes[:rank])
end = min(sum(shard_sizes[:rank + 1]), total_size)
return range(begin, end)
def __iter__(self):
yield from self._local_indices
def __len__(self):
return len(self._local_indices)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', type=str, default='Qwen/Qwen2-Audio-7B')
parser.add_argument('--dataset', type=str, default='')
parser.add_argument('--batch-size', type=int, default=1)
parser.add_argument('--num-workers', type=int, default=1)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
torch.distributed.init_process_group(
backend='nccl',
world_size=int(os.getenv('WORLD_SIZE', '1')),
rank=int(os.getenv('RANK', '0')),
)
torch.cuda.set_device(int(os.getenv('LOCAL_RANK', 0)))
model = Qwen2AudioForConditionalGeneration.from_pretrained(
args.checkpoint, device_map='cuda', trust_remote_code=True, torch_dtype='auto').eval()
processor = AutoProcessor.from_pretrained(args.checkpoint)
processor.tokenizer.padding_side = 'left'
random.seed(args.seed)
dataset = AudioDataset(
ds=ds_collections[args.dataset],
)
data_loader = torch.utils.data.DataLoader(
dataset=dataset,
sampler=InferenceSampler(len(dataset)),
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=True,
drop_last=False,
collate_fn=partial(collate_fn, processor=processor),
)
gts = []
sources = []
rets = []
audio_paths = []
for _, (inputs, audio_path, source, gt) in tqdm(enumerate(data_loader)):
inputs['input_ids'] = inputs['input_ids'].to('cuda')
output_ids = model.generate(**inputs, max_new_tokens=256, min_new_tokens=1, do_sample=False)
output_ids = output_ids[:, inputs.input_ids.size(1):]
output = processor.batch_decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)
gts.extend(gt)
rets.extend(output)
sources.extend(source)
audio_paths.extend(audio_path)
torch.distributed.barrier()
world_size = torch.distributed.get_world_size()
merged_gts = [None for _ in range(world_size)]
merged_sources = [None for _ in range(world_size)]
merged_responses = [None for _ in range(world_size)]
merged_audio_paths = [None for _ in range(world_size)]
torch.distributed.all_gather_object(merged_gts, gts)
torch.distributed.all_gather_object(merged_sources, sources)
torch.distributed.all_gather_object(merged_responses, rets)
torch.distributed.all_gather_object(merged_audio_paths, audio_paths)
merged_gts = [_ for _ in itertools.chain.from_iterable(merged_gts)]
merged_sources = [_ for _ in itertools.chain.from_iterable(merged_sources)]
merged_audio_paths = [_ for _ in itertools.chain.from_iterable(merged_audio_paths)]
merged_responses = [
_ for _ in itertools.chain.from_iterable(merged_responses)
]
if torch.distributed.get_rank() == 0:
print(f"Evaluating {args.dataset} ...")
results = []
for gt, response, source, audio_path in zip(merged_gts, merged_responses, merged_sources, merged_audio_paths):
results.append({
'gt': gt,
'response': response,
'source': source,
'audio_path': audio_path,
})
time_prefix = time.strftime('%y%m%d%H%M%S', time.localtime())
results_file = f'{args.dataset}_{time_prefix}.json'
json.dump(results, open(results_file, 'w'))
results_dict = {}
for item in tqdm(results):
source = item["source"]
results_dict.setdefault(source, []).append(item)
for source in results_dict:
refs, hyps = [], []
bi_refs, bi_hyps = [], []
results_list = results_dict[source]
for result in results_list:
gt = result["gt"]
response = result["response"].lstrip()
refs.append(gt)
hyps.append(response)
score = accuracy_score(refs, hyps)
print(f"{source} ACC_score:", score, len(hyps))
torch.distributed.barrier()
|