Spaces:
Runtime error
Runtime error
Upload 6 files
#1
by
Y-Mandevski
- opened
- README.txt +13 -0
- __init__.txt +0 -0
- app.py +18 -5
- gitattributes.txt +34 -0
- helper_funcs.py +49 -1
README.txt
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Preprocessing
|
3 |
+
emoji: 🔥
|
4 |
+
colorFrom: gray
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.32.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: veneta/preprocessing
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
__init__.txt
ADDED
File without changes
|
app.py
CHANGED
@@ -1,26 +1,30 @@
|
|
1 |
import pandas as pd
|
2 |
import gradio as gr
|
3 |
|
4 |
-
from helper_funcs import functions, INPUT_FILE_TYPE, OUTPUT_FILE_TYPE
|
5 |
|
6 |
|
7 |
def run_function(selected_function, file_obj, input_column, output_column, output_type):
|
|
|
8 |
if 'json' in file_obj.name.lower():
|
9 |
df = pd.read_json(file_obj.name)
|
10 |
if any([x in file_obj.name.lower() for x in ['csv', 'txt']]):
|
11 |
-
df = pd.read_csv(file_obj.name)
|
12 |
|
13 |
output_file = 'result' + output_type
|
14 |
|
15 |
if input_column not in list(df.columns):
|
16 |
raise gr.Error("Input column name: such column does not exist in dataframe!")
|
17 |
|
18 |
-
|
|
|
19 |
|
20 |
|
21 |
app = gr.Blocks()
|
22 |
|
|
|
23 |
with app:
|
|
|
24 |
gr.Markdown(
|
25 |
"""
|
26 |
# Instructions
|
@@ -78,10 +82,19 @@ with app:
|
|
78 |
file_types=OUTPUT_FILE_TYPE
|
79 |
)
|
80 |
|
81 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
run_function,
|
83 |
inputs=[selected_function, file_obj, input_column, output_column, output_type],
|
84 |
-
outputs=[output_dataframe, output_csv]
|
85 |
)
|
|
|
|
|
86 |
|
87 |
app.launch()
|
|
|
1 |
import pandas as pd
|
2 |
import gradio as gr
|
3 |
|
4 |
+
from helper_funcs import functions, INPUT_FILE_TYPE, OUTPUT_FILE_TYPE, get_classla_stats_df
|
5 |
|
6 |
|
7 |
def run_function(selected_function, file_obj, input_column, output_column, output_type):
|
8 |
+
|
9 |
if 'json' in file_obj.name.lower():
|
10 |
df = pd.read_json(file_obj.name)
|
11 |
if any([x in file_obj.name.lower() for x in ['csv', 'txt']]):
|
12 |
+
df = pd.read_csv(file_obj.name, encoding='utf-8')
|
13 |
|
14 |
output_file = 'result' + output_type
|
15 |
|
16 |
if input_column not in list(df.columns):
|
17 |
raise gr.Error("Input column name: such column does not exist in dataframe!")
|
18 |
|
19 |
+
funcs = functions[selected_function](df, input_column, output_column, output_file)
|
20 |
+
return funcs
|
21 |
|
22 |
|
23 |
app = gr.Blocks()
|
24 |
|
25 |
+
|
26 |
with app:
|
27 |
+
process_status = gr.State(False)
|
28 |
gr.Markdown(
|
29 |
"""
|
30 |
# Instructions
|
|
|
82 |
file_types=OUTPUT_FILE_TYPE
|
83 |
)
|
84 |
|
85 |
+
stats_plot = gr.BarPlot(
|
86 |
+
value = pd.DataFrame(columns=['value', 'count']),
|
87 |
+
x = 'value',
|
88 |
+
y = 'count'
|
89 |
+
)
|
90 |
+
|
91 |
+
process_button = gr.Button("Process")
|
92 |
+
process_button.click(
|
93 |
run_function,
|
94 |
inputs=[selected_function, file_obj, input_column, output_column, output_type],
|
95 |
+
outputs=[output_dataframe, output_csv],
|
96 |
)
|
97 |
+
strats_button = gr.Button("Get Stats")
|
98 |
+
strats_button.click(get_classla_stats_df, inputs=None, outputs=stats_plot)
|
99 |
|
100 |
app.launch()
|
gitattributes.txt
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
helper_funcs.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import ast
|
2 |
import warnings
|
|
|
3 |
|
4 |
import classla
|
5 |
import pandas as pd
|
@@ -12,6 +13,8 @@ warnings.filterwarnings('ignore')
|
|
12 |
INPUT_FILE_TYPE = ['.csv', '.json', '.txt']
|
13 |
OUTPUT_FILE_TYPE = ['.csv', '.xlsx']
|
14 |
|
|
|
|
|
15 |
|
16 |
def to_output(df, output_file):
|
17 |
if 'xlsx' in output_file:
|
@@ -137,6 +140,45 @@ def get_classla_all(df, input_column, output_column, output_file):
|
|
137 |
df[output_column] = [clarin_classla_result[index] for index in range(df.shape[0])]
|
138 |
return to_output(df, output_file)
|
139 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
|
141 |
def run_all(df, input_column, output_column, output_file):
|
142 |
def load_file(output_file):
|
@@ -160,6 +202,9 @@ def run_all(df, input_column, output_column, output_file):
|
|
160 |
_, _ = get_classla_all(df, 'extracted_sentences', 'classla_all', output_file)
|
161 |
df = load_file(output_file)
|
162 |
_, _ = get_classla_ner(df, 'extracted_sentences', 'classla_ner', output_file)
|
|
|
|
|
|
|
163 |
return df.head(10), output_file
|
164 |
|
165 |
|
@@ -171,5 +216,8 @@ functions = {
|
|
171 |
'separate sentences': get_sentences,
|
172 |
'Classla NER': get_classla_ner,
|
173 |
'Classla full result': get_classla_all,
|
174 |
-
'
|
|
|
175 |
}
|
|
|
|
|
|
1 |
import ast
|
2 |
import warnings
|
3 |
+
from collections import Counter
|
4 |
|
5 |
import classla
|
6 |
import pandas as pd
|
|
|
13 |
INPUT_FILE_TYPE = ['.csv', '.json', '.txt']
|
14 |
OUTPUT_FILE_TYPE = ['.csv', '.xlsx']
|
15 |
|
16 |
+
STATS_OUTPUT = 'classla_stats'
|
17 |
+
OUTPUT_FILE_NAME = 'result.csv'
|
18 |
|
19 |
def to_output(df, output_file):
|
20 |
if 'xlsx' in output_file:
|
|
|
140 |
df[output_column] = [clarin_classla_result[index] for index in range(df.shape[0])]
|
141 |
return to_output(df, output_file)
|
142 |
|
143 |
+
def classla_stats(df, input_column, output_column, output_file):
|
144 |
+
|
145 |
+
def count_ner(ner_list: []):
|
146 |
+
counter = Counter()
|
147 |
+
for el in ner_list:
|
148 |
+
counter += Counter(el)
|
149 |
+
return str(dict(counter))
|
150 |
+
|
151 |
+
|
152 |
+
global STATS_OUTPUT
|
153 |
+
STATS_OUTPUT = output_column
|
154 |
+
global OUTPUT_FILE_NAME
|
155 |
+
OUTPUT_FILE_NAME = output_file
|
156 |
+
|
157 |
+
|
158 |
+
df[input_column] = df[input_column].apply(lambda x: ast.literal_eval(x))
|
159 |
+
|
160 |
+
if input_column != output_column:
|
161 |
+
df[output_column] = df[input_column]
|
162 |
+
|
163 |
+
clarin_classla_result = [count_ner(df.iloc[index][input_column]) for index in range(df.shape[0])]
|
164 |
+
df[output_column] = [clarin_classla_result[index] for index in range(df.shape[0])]
|
165 |
+
return to_output(df, output_file)
|
166 |
+
|
167 |
+
|
168 |
+
def get_classla_stats_df():
|
169 |
+
print(OUTPUT_FILE_NAME)
|
170 |
+
df = pd.read_csv(OUTPUT_FILE_NAME, encoding='utf-8')
|
171 |
+
df[STATS_OUTPUT] = df[STATS_OUTPUT].apply(lambda x: ast.literal_eval(x))
|
172 |
+
|
173 |
+
counter = Counter()
|
174 |
+
for _, line in df.iterrows():
|
175 |
+
counter += Counter(line[STATS_OUTPUT])
|
176 |
+
|
177 |
+
r = pd.DataFrame(dict(counter), index=range(len(dict(counter))))
|
178 |
+
r.drop_duplicates(inplace=True)
|
179 |
+
r = r.melt(var_name='value', value_name='count')
|
180 |
+
return r
|
181 |
+
|
182 |
|
183 |
def run_all(df, input_column, output_column, output_file):
|
184 |
def load_file(output_file):
|
|
|
202 |
_, _ = get_classla_all(df, 'extracted_sentences', 'classla_all', output_file)
|
203 |
df = load_file(output_file)
|
204 |
_, _ = get_classla_ner(df, 'extracted_sentences', 'classla_ner', output_file)
|
205 |
+
df = load_file(output_file)
|
206 |
+
_, _ = classla_stats(df, 'classla_ner', 'classla_stats', output_file)
|
207 |
+
df = load_file(output_file)
|
208 |
return df.head(10), output_file
|
209 |
|
210 |
|
|
|
216 |
'separate sentences': get_sentences,
|
217 |
'Classla NER': get_classla_ner,
|
218 |
'Classla full result': get_classla_all,
|
219 |
+
'classla stats': classla_stats,
|
220 |
+
'run all': run_all,
|
221 |
}
|
222 |
+
|
223 |
+
|