Spaces:
Sleeping
Sleeping
File size: 18,670 Bytes
c318a73 48860c6 97a428f 48860c6 4336e0a c318a73 48860c6 c318a73 6a24aec 48860c6 705e089 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 694f61a 48860c6 705e089 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 6a24aec 48860c6 c318a73 97a428f c318a73 48860c6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import os
import gradio as gr
from audiocraft.models import MAGNeT, MusicGen, AudioGen
# from gradio_components.image import generate_caption, improve_prompt
from gradio_components.image import generate_caption_gpt4
from gradio_components.prediction import predict, transcribe
import re
import argparse
from gradio_components.model_cards import TEXT_TO_MIDI_MODELS, TEXT_TO_SOUND_MODELS, MELODY_CONTINUATION_MODELS, TEXT_TO_MUSIC_MODELS, MODEL_CARDS, MELODY_CONDITIONED_MODELS
import ast
import json
theme = gr.themes.Glass(
primary_hue="fuchsia",
secondary_hue="indigo",
neutral_hue="slate",
font=[
gr.themes.GoogleFont("Source Sans Pro"),
"ui-sans-serif",
"system-ui",
"sans-serif",
],
).set(
body_background_fill_dark="*background_fill_primary",
embed_radius="*table_radius",
background_fill_primary="*neutral_50",
background_fill_primary_dark="*neutral_950",
background_fill_secondary_dark="*neutral_900",
border_color_accent="*neutral_600",
border_color_accent_subdued="*color_accent",
border_color_primary_dark="*neutral_700",
block_background_fill="*background_fill_primary",
block_background_fill_dark="*neutral_800",
block_border_width="1px",
block_label_background_fill="*background_fill_primary",
block_label_background_fill_dark="*background_fill_secondary",
block_label_text_color="*neutral_500",
block_label_text_size="*text_sm",
block_label_text_weight="400",
block_shadow="none",
block_shadow_dark="none",
block_title_text_color="*neutral_500",
block_title_text_weight="400",
panel_border_width="0",
panel_border_width_dark="0",
checkbox_background_color_dark="*neutral_800",
checkbox_border_width="*input_border_width",
checkbox_label_border_width="*input_border_width",
input_background_fill="*neutral_100",
input_background_fill_dark="*neutral_700",
input_border_color_focus_dark="*neutral_700",
input_border_width="0px",
input_border_width_dark="0px",
slider_color="#2563eb",
slider_color_dark="#2563eb",
table_even_background_fill_dark="*neutral_950",
table_odd_background_fill_dark="*neutral_900",
button_border_width="*input_border_width",
button_shadow_active="none",
button_primary_background_fill="*primary_200",
button_primary_background_fill_dark="*primary_700",
button_primary_background_fill_hover="*button_primary_background_fill",
button_primary_background_fill_hover_dark="*button_primary_background_fill",
button_secondary_background_fill="*neutral_200",
button_secondary_background_fill_dark="*neutral_600",
button_secondary_background_fill_hover="*button_secondary_background_fill",
button_secondary_background_fill_hover_dark="*button_secondary_background_fill",
button_cancel_background_fill="*button_secondary_background_fill",
button_cancel_background_fill_dark="*button_secondary_background_fill",
button_cancel_background_fill_hover="*button_cancel_background_fill",
button_cancel_background_fill_hover_dark="*button_cancel_background_fill",
)
def generate_prompt(prompt, style):
prompt = ','.join([prompt]+style)
return prompt
def UI(share=False):
with gr.Blocks() as demo:
with gr.Tab("Generate Music by text"):
with gr.Row():
with gr.Column():
with gr.Row():
model_path = gr.Dropdown(
choices=TEXT_TO_MUSIC_MODELS,
label="Select the model",
value="facebook/musicgen-large",
)
with gr.Row():
text_prompt = gr.Textbox(
label="Let's make a song about ...",
value="First day learning music generation in Standford university",
interactive=True,
visible=True,
)
num_outputs = gr.Number(
label="Number of outputs",
value=1,
minimum=1,
maximum=10,
interactive=True,
)
with gr.Row():
style = gr.CheckboxGroup(
["Jazz", "Classical Music", "Hip Hop", "Ragga Jungle", "Dark Jazz", "Soul", "Blues", "80s Rock N Roll"],
value=None,
label="music genre",
interactive=True,
)
@gr.on(inputs=[style], outputs=text_prompt)
def update_prompt(style):
return generate_prompt(text_prompt.value, style)
config_output_textbox = gr.Textbox(label="Model Configs", visible=False)
@gr.render(inputs=model_path)
def show_config_options(model_path):
print(model_path)
with gr.Accordion("Model Generation Configs"):
if "magnet" in model_path:
with gr.Row():
top_k = gr.Number(label="Top-k", value=300, interactive=True)
top_p = gr.Number(label="Top-p", value=0, interactive=True)
temperature = gr.Number(
label="Temperature", value=1.0, interactive=True
)
span_arrangement = gr.Radio(["nonoverlap", "stride1"], value='nonoverlap', label="span arrangment", info=" Use either non-overlapping spans ('nonoverlap') or overlapping spans ('stride1') ")
@gr.on(inputs=[top_k, top_p, temperature, span_arrangement], outputs=config_output_textbox)
def return_model_configs(top_k, top_p, temperature, span_arrangement):
return {"top_k": top_k, "top_p": top_p, "temperature": temperature, "span_arrangement": span_arrangement}
else:
with gr.Row():
duration = gr.Slider(
minimum=10,
maximum=30,
value=30,
label="Duration",
interactive=True,
)
use_sampling = gr.Checkbox(label="Use Sampling", interactive=True, value=True)
top_k = gr.Number(label="Top-k", value=300, interactive=True)
top_p = gr.Number(label="Top-p", value=0, interactive=True)
temperature = gr.Number(
label="Temperature", value=1.0, interactive=True
)
@gr.on(inputs=[duration, use_sampling, top_k, top_p, temperature], outputs=config_output_textbox)
def return_model_configs(duration, use_sampling, top_k, top_p, temperature):
return {"duration": duration, "use_sampling": use_sampling, "top_k": top_k, "top_p": top_p, "temperature": temperature}
with gr.Column():
with gr.Row():
melody = gr.Audio(sources=["upload"], type="numpy", label="File",
interactive=True, elem_id="melody-input", visible=False)
submit = gr.Button("Generate Music")
result_text = gr.Textbox(label="Generated Music (text)", type="text", interactive=False)
print(result_text)
output_audios = []
@gr.render(inputs=result_text)
def show_output_audio(tmp_paths):
if tmp_paths:
tmp_paths = ast.literal_eval(tmp_paths)
print(tmp_paths)
for i in range(len(tmp_paths)):
tmp_path = tmp_paths[i]
_audio = gr.Audio(value=tmp_path , label=f"Generated Music {i}", type='filepath', interactive=False, visible=True)
output_audios.append(_audio)
submit.click(
fn=predict,
inputs=[model_path, config_output_textbox, text_prompt, melody, num_outputs],
outputs=result_text,
queue=True
)
with gr.Tab("Generate Music by melody"):
with gr.Column():
with gr.Row():
radio_melody_condition = gr.Radio(["Muisc Continuation", "Music Conditioning"], value=None, label="Select the condition")
model_path2 = gr.Dropdown(label="model")
@gr.on(inputs=radio_melody_condition, outputs=model_path2)
def model_selection(radio_melody_condition):
if radio_melody_condition == "Muisc Continuation":
model_path2 = gr.Dropdown(
choices=MELODY_CONTINUATION_MODELS,
label="Select the model",
value="facebook/musicgen-large",
interactive=True,
visible=True
)
elif radio_melody_condition == "Music Conditioning":
model_path2 = gr.Dropdown(
choices=MELODY_CONDITIONED_MODELS,
label="Select the model",
value="facebook/musicgen-melody-large",
interactive=True,
visible=True
)
else:
model_path2 = gr.Dropdown(
choices=TEXT_TO_SOUND_MODELS,
label="Select the model",
value="facebook/musicgen-large",
interactive=True,
visible=False
)
return model_path2
upload_melody = gr.Audio(sources=["upload", "microphone"], type="filepath", label="File")
prompt_text2 = gr.Textbox(
label="Let's make a song about ...",
value=None,
interactive=True,
visible=True,
)
with gr.Row():
config_output_textbox2 = gr.Textbox(
label="Model Configs",
visible=True)
with gr.Row():
duration2 = gr.Number(10, label="Duration", interactive=True)
num_outputs2 = gr.Number(1, label="Number of outputs", interactive=True)
@gr.on(inputs=[duration2], outputs=config_output_textbox2)
def return_model_configs2(duration):
return {"duration": duration, "use_sampling": True, "top_k": 300, "top_p": 0, "temperature": 1}
submit2 = gr.Button("Generate Music")
result_text2 = gr.Textbox(label="Generated Music (melody)", type="text", interactive=False, visible=True)
submit2.click(
fn=predict,
inputs=[model_path2, config_output_textbox2, prompt_text2, upload_melody, num_outputs2],
outputs=result_text2,
queue=True
)
@gr.render(inputs=result_text2)
def show_output_audio(tmp_paths):
if tmp_paths:
tmp_paths = ast.literal_eval(tmp_paths)
print(tmp_paths)
for i in range(len(tmp_paths)):
tmp_path = tmp_paths[i]
_audio = gr.Audio(value=tmp_path , label=f"Generated Music {i}", type='filepath', interactive=False)
output_audios.append(_audio)
gr.Examples(
examples = [
[
os.path.join(
os.path.dirname(__file__), "./data/audio/Suri's Improv.mp3"
),
30,
"facebook/musicgen-large",
"Muisc Continuation",
],
[
os.path.join(
os.path.dirname(__file__), "./data/audio/lie_no_tomorrow_20sec.wav"
),
40,
"facebook/musicgen-melody-large",
"Music Conditioning",
]
],
inputs=[upload_melody, duration2, model_path2, radio_melody_condition],
)
with gr.Tab("Generate Music by image"):
with gr.Column():
with gr.Row():
image_input = gr.Image("Upload an image", type="filepath")
with gr.Accordion("Image Captioning", open=False):
image_description = gr.Textbox(label='image description', visible=True, interactive=False)
image_caption = gr.Textbox(label='generated text prompt', visible=True, interactive=True)
@gr.on(inputs=image_input, outputs=[image_description, image_caption])
def generate_image_text_prompt(image_input):
if image_input:
image_description, image_caption = generate_caption_gpt4(image_input, model_path)
# meesage_object, description, prompt = generate_caption_claude3(image_input, model_path)
return image_description, image_caption
return "", ""
with gr.Row():
melody3 = gr.Audio(sources=["upload", "microphone"], type="filepath", label="File", visible=True)
with gr.Column():
model_path3 = gr.Dropdown(
choices=TEXT_TO_SOUND_MODELS + TEXT_TO_MUSIC_MODELS + MELODY_CONDITIONED_MODELS,
label="Select the model",
value="facebook/musicgen-large",
)
duration3 = gr.Number(30, visible=False, label="Duration")
submit3 = gr.Button("Generate Music")
result_text3 = gr.Textbox(label="Generated Music (image)", type="text", interactive=False, visible=True)
def predict_image_music(model_path3, image_caption, duration3, melody3):
model_configs = {"duration": duration3, "use_sampling": True, "top_k": 250, "top_p": 0, "temperature": 1}
return predict(
model_version = model_path3,
generation_configs = model_configs,
prompt_text = image_caption,
prompt_wav = melody3
)
submit3.click(
fn=predict_image_music,
inputs=[model_path3, image_caption, duration3, melody3],
outputs=result_text3,
queue=True
)
@gr.render(inputs=result_text3)
def show_output_audio(tmp_paths):
if tmp_paths:
tmp_paths = ast.literal_eval(tmp_paths)
print(tmp_paths)
for i in range(len(tmp_paths)):
tmp_path = tmp_paths[i]
_audio = gr.Audio(value=tmp_path , label=f"Generated Music {i}", type='filepath', interactive=False)
output_audios.append(_audio)
@gr.render(inputs=result_text3)
def show_transcribt_audio(tmp_paths):
transcribe(tmp_paths)
gr.Examples(
examples = [
[
os.path.join(
os.path.dirname(__file__), "./data/image/beach.jpeg"
),
"facebook/musicgen-large",
30,
None,
],
[
os.path.join(
os.path.dirname(__file__), "./data/image/beach.jpeg"
),
"facebook/audiogen-medium",
15,
None,
],
[
os.path.join(
os.path.dirname(__file__), "./data/image/beach.jpeg"
),
"facebook/musicgen-melody-large",
30,
os.path.join(
os.path.dirname(__file__), "./data/audio/Suri's Improv.mp3"
),
],
[
os.path.join(
os.path.dirname(__file__), "./data/image/cat.jpeg"
),
"facebook/musicgen-large",
30,
None,
],
],
inputs=[image_input, model_path3, duration3, melody3],
)
demo.queue().launch(share=share)
if __name__ == "__main__":
# Create the parser
parser = argparse.ArgumentParser()
parser.add_argument('--share', action='store_true', help='Enable sharing.')
args = parser.parse_args()
UI(share=args.share)
|