Spaces:
Sleeping
Sleeping
optimize the prompt
Browse files- app.py +53 -8
- gradio_components/image.py +30 -0
- gradio_components/prediction.py +2 -5
app.py
CHANGED
@@ -2,7 +2,7 @@ import os
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
-
from gradio_components.image import generate_caption
|
6 |
from gradio_components.prediction import predict, transcribe
|
7 |
|
8 |
theme = gr.themes.Glass(
|
@@ -83,7 +83,7 @@ def generate_prompt(difficulty, style):
|
|
83 |
"Medum": "player who has 2-3 years experience",
|
84 |
"Hard": "player who has more than 4 years experiences",
|
85 |
}
|
86 |
-
prompt = "piano only music for a {} to
|
87 |
_DIFFICULTY_MAPPIN[difficulty], style
|
88 |
)
|
89 |
return prompt
|
@@ -106,6 +106,16 @@ def toggle_melody_condition(melody_condition):
|
|
106 |
)
|
107 |
|
108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
def show_caption(show_caption_condition, description, prompt):
|
110 |
if show_caption_condition:
|
111 |
return (
|
@@ -145,6 +155,17 @@ def show_caption(show_caption_condition, description, prompt):
|
|
145 |
)
|
146 |
|
147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
def post_submit(show_caption, model_path, image_input):
|
149 |
_, description, prompt = generate_caption(image_input, model_path)
|
150 |
return (
|
@@ -210,12 +231,36 @@ def UI():
|
|
210 |
)
|
211 |
if style == "Others":
|
212 |
style = gr.Textbox(label="Type your music genre")
|
213 |
-
prompt = generate_prompt(difficulty.value, style.value)
|
214 |
customize = gr.Checkbox(
|
215 |
-
label="Customize the prompt", interactive=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
)
|
217 |
-
|
218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
with gr.Column():
|
220 |
with gr.Row():
|
221 |
melody = gr.Audio(
|
@@ -385,12 +430,12 @@ def UI():
|
|
385 |
fn=post_submit,
|
386 |
inputs=[show_prompt, model_path, image_input],
|
387 |
outputs=[description, prompt, generate],
|
388 |
-
|
389 |
show_prompt.change(
|
390 |
fn=show_caption,
|
391 |
inputs=[show_prompt, description, prompt],
|
392 |
outputs=[description, prompt, generate],
|
393 |
-
|
394 |
transcribe_button.click(transcribe, inputs=[output_audio], outputs=d)
|
395 |
generate.click(
|
396 |
fn=predict,
|
|
|
2 |
|
3 |
import gradio as gr
|
4 |
|
5 |
+
from gradio_components.image import generate_caption, improve_prompt
|
6 |
from gradio_components.prediction import predict, transcribe
|
7 |
|
8 |
theme = gr.themes.Glass(
|
|
|
83 |
"Medum": "player who has 2-3 years experience",
|
84 |
"Hard": "player who has more than 4 years experiences",
|
85 |
}
|
86 |
+
prompt = "piano only music for a {} to practice with the touch of {}".format(
|
87 |
_DIFFICULTY_MAPPIN[difficulty], style
|
88 |
)
|
89 |
return prompt
|
|
|
106 |
)
|
107 |
|
108 |
|
109 |
+
def toggle_custom_prompt(customize, difficulty, style):
|
110 |
+
if customize:
|
111 |
+
return gr.Textbox(label="Type your prompt", interactive=True, visible=True)
|
112 |
+
else:
|
113 |
+
prompt = generate_prompt(difficulty, style)
|
114 |
+
return gr.Textbox(
|
115 |
+
label="Generated Prompt", value=prompt, interactive=False, visible=True
|
116 |
+
)
|
117 |
+
|
118 |
+
|
119 |
def show_caption(show_caption_condition, description, prompt):
|
120 |
if show_caption_condition:
|
121 |
return (
|
|
|
155 |
)
|
156 |
|
157 |
|
158 |
+
def optimize_fn(prompt):
|
159 |
+
message_object, prompt = improve_prompt(prompt)
|
160 |
+
return prompt
|
161 |
+
|
162 |
+
|
163 |
+
def display_prompt(prompt):
|
164 |
+
return gr.Textbox(
|
165 |
+
label="Generated Prompt", value=prompt, interactive=False, visible=True
|
166 |
+
)
|
167 |
+
|
168 |
+
|
169 |
def post_submit(show_caption, model_path, image_input):
|
170 |
_, description, prompt = generate_caption(image_input, model_path)
|
171 |
return (
|
|
|
231 |
)
|
232 |
if style == "Others":
|
233 |
style = gr.Textbox(label="Type your music genre")
|
|
|
234 |
customize = gr.Checkbox(
|
235 |
+
label="Customize the prompt", interactive=True, value=False
|
236 |
+
)
|
237 |
+
_init_prompt = generate_prompt(difficulty.value, style.value)
|
238 |
+
prompt = gr.Textbox(
|
239 |
+
label="",
|
240 |
+
value=_init_prompt,
|
241 |
+
interactive=False,
|
242 |
+
visible=False,
|
243 |
+
)
|
244 |
+
customize.change(
|
245 |
+
fn=toggle_custom_prompt,
|
246 |
+
inputs=[customize, difficulty, style],
|
247 |
+
outputs=prompt,
|
248 |
)
|
249 |
+
print(prompt)
|
250 |
+
with gr.Column():
|
251 |
+
optimize = gr.Button(
|
252 |
+
"Optimize the prompt", interactive=True
|
253 |
+
)
|
254 |
+
with gr.Column():
|
255 |
+
show_prompt = gr.Button("Show the prompt", interactive=True)
|
256 |
+
prompt_text = gr.Textbox(
|
257 |
+
"Optimized Prompt", interactive=False, visible=False
|
258 |
+
)
|
259 |
+
optimize.click(optimize_fn, inputs=[prompt], outputs=prompt)
|
260 |
+
show_prompt.click(
|
261 |
+
display_prompt, inputs=[prompt], outputs=prompt_text
|
262 |
+
)
|
263 |
+
|
264 |
with gr.Column():
|
265 |
with gr.Row():
|
266 |
melody = gr.Audio(
|
|
|
430 |
fn=post_submit,
|
431 |
inputs=[show_prompt, model_path, image_input],
|
432 |
outputs=[description, prompt, generate],
|
433 |
+
)
|
434 |
show_prompt.change(
|
435 |
fn=show_caption,
|
436 |
inputs=[show_prompt, description, prompt],
|
437 |
outputs=[description, prompt, generate],
|
438 |
+
)
|
439 |
transcribe_button.click(transcribe, inputs=[output_audio], outputs=d)
|
440 |
generate.click(
|
441 |
fn=predict,
|
gradio_components/image.py
CHANGED
@@ -28,6 +28,36 @@ Try to make the prompt simple and concise with only 1-2 sentences
|
|
28 |
Make sure the ouput is in JSON fomat, with two items `description` and `prompt`
|
29 |
"""
|
30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
def generate_caption(image_file, model_file, progress=gr.Progress()):
|
33 |
if model_file == "facebook/audiogen-medium":
|
|
|
28 |
Make sure the ouput is in JSON fomat, with two items `description` and `prompt`
|
29 |
"""
|
30 |
|
31 |
+
PROMPT_IMPROVEMENT_GENERATE_PROMPT = """
|
32 |
+
You are an export llm prompt enginner, you will be helping the user to improve their prompts. here are some examples of good prompts
|
33 |
+
- "90s rock song with electric guitar and heavy drums"
|
34 |
+
- "An 80s driving pop song with heavy drums and synth pads in the background"
|
35 |
+
- "An energetic hip-hop music piece, with synth sounds and strong bass. There is a rhythmic hi-hat patten in the drums."
|
36 |
+
- "A grand orchestral arrangement with thunderous percussion, epic brass fanfares, and soaring strings, creating a cinematic atmosphere fit for a heroic battle."
|
37 |
+
- "Classic reggae track with an electronic guitar solo"
|
38 |
+
|
39 |
+
You will be provided with a prompt and you need to improve it. Make sure the prompt is simple and concise with only 1-2 sentences. The output should be in JSON format, with one item `prompt`
|
40 |
+
"""
|
41 |
+
|
42 |
+
|
43 |
+
def improve_prompt(prompt):
|
44 |
+
message = client.messages.create(
|
45 |
+
model="claude-3-opus-20240229",
|
46 |
+
max_tokens=1024,
|
47 |
+
system=PROMPT_IMPROVEMENT_GENERATE_PROMPT,
|
48 |
+
messages=[
|
49 |
+
{
|
50 |
+
"role": "user",
|
51 |
+
"content": [
|
52 |
+
{"type": "text", "text": prompt},
|
53 |
+
],
|
54 |
+
}
|
55 |
+
],
|
56 |
+
)
|
57 |
+
message_object = json.loads(message.content[0].text)
|
58 |
+
prompt = message_object["prompt"]
|
59 |
+
return message_object, prompt
|
60 |
+
|
61 |
|
62 |
def generate_caption(image_file, model_file, progress=gr.Progress()):
|
63 |
if model_file == "facebook/audiogen-medium":
|
gradio_components/prediction.py
CHANGED
@@ -8,7 +8,7 @@ import gradio as gr
|
|
8 |
import torch
|
9 |
from audiocraft.data.audio import audio_write
|
10 |
from audiocraft.data.audio_utils import convert_audio
|
11 |
-
from audiocraft.models import
|
12 |
from basic_pitch import ICASSP_2022_MODEL_PATH
|
13 |
from transformers import AutoModelForSeq2SeqLM
|
14 |
|
@@ -69,10 +69,7 @@ def _do_predictions(
|
|
69 |
else:
|
70 |
if model_file == "facebook/audiogen-medium":
|
71 |
# audio condition
|
72 |
-
outputs = model.generate(
|
73 |
-
texts,
|
74 |
-
progress=progress
|
75 |
-
)
|
76 |
else:
|
77 |
# text only
|
78 |
outputs = model.generate(texts, progress=progress)
|
|
|
8 |
import torch
|
9 |
from audiocraft.data.audio import audio_write
|
10 |
from audiocraft.data.audio_utils import convert_audio
|
11 |
+
from audiocraft.models import AudioGen, MusicGen
|
12 |
from basic_pitch import ICASSP_2022_MODEL_PATH
|
13 |
from transformers import AutoModelForSeq2SeqLM
|
14 |
|
|
|
69 |
else:
|
70 |
if model_file == "facebook/audiogen-medium":
|
71 |
# audio condition
|
72 |
+
outputs = model.generate(texts, progress=progress)
|
|
|
|
|
|
|
73 |
else:
|
74 |
# text only
|
75 |
outputs = model.generate(texts, progress=progress)
|