VisualizeGeoMap / app.py
Suchinthana
Update app.py
9690adb
import os
import json
import numpy as np
import torch
from PIL import Image, ImageDraw
import gradio as gr
from openai import OpenAI
from geopy.geocoders import Nominatim
from staticmap import StaticMap, CircleMarker, Polygon
from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline
import spaces
import logging
import math
from typing import List, Union
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Initialize APIs
openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY'])
geolocator = Nominatim(user_agent="geoapi")
# Function to fetch coordinates
@spaces.GPU
def get_geo_coordinates(location_name):
try:
location = geolocator.geocode(location_name)
if location:
return [location.longitude, location.latitude]
return None
except Exception as e:
logger.error(f"Error fetching coordinates for {location_name}: {e}")
return None
# Function to process OpenAI chat response
@spaces.GPU
def process_openai_response(query):
response = openai_client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": """
You are an assistant that generates structured JSON output for geographical queries with city names. Your task is to generate a JSON object containing information about geographical features and their representation based on the user's query. Follow these rules:
1. The JSON should always have the following structure:
{
"input": "<user's query>",
"output": {
"answer": "<concise text answering the query>",
"feature_representation": {
"type": "<one of: Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection>",
"cities": ["<list of city names>"],
"properties": {
"description": "<a prompt for a diffusion model describing the geographical feature>"
}
}
}
}
2. For the `type` field in `feature_representation`:
- Use "Point" for single city queries.
- Use "MultiPoint" for queries involving multiple cities not forming a line or area.
- Use "LineString" for queries about paths between two or more cities.
- Use "Polygon" for queries about areas formed by three or more cities.
3. For the `cities` field:
- List the names of cities mentioned in the query in the order they appear.
- If no cities are mentioned, try to add them with your knowledge.
4. For the `properties.description` field:
- Describe the geographical feature in a creative way, suitable for generating an image with a diffusion model.
### Example Input:
"Mark a triangular area of 3 US cities."
### Example Output:
{
"input": "Mark a triangular area of 3 US cities.",
"output": {
"answer": "The cities New York, Boston, and Philadelphia form a triangle.",
"feature_representation": {
"type": "Polygon",
"cities": ["New York", "Boston", "Philadelphia"],
"properties": {
"description": "A satellite image of a triangular area formed by New York, Boston, and Philadelphia, with green fields and urban regions, 4k resolution, highly detailed."
}
}
}
}
Generate similar JSON for the following query:
"""
},
{
"role": "user",
"content": query
}
],
temperature=1,
max_tokens=2048,
top_p=1,
frequency_penalty=0,
presence_penalty=0,
response_format={"type": "json_object"}
)
return json.loads(response.choices[0].message.content)
# Generate GeoJSON from OpenAI response
@spaces.GPU
def generate_geojson(response):
logger.info(f"OpenAI response: {response}")
feature_type = response['output']['feature_representation']['type']
city_names = response['output']['feature_representation']['cities']
properties = response['output']['feature_representation']['properties']
coordinates = []
# Fetch coordinates for cities
for city in city_names:
try:
coord = get_geo_coordinates(city)
if coord:
coordinates.append(coord)
else:
logger.warning(f"Coordinates not found for city: {city}")
except Exception as e:
logger.error(f"Error fetching coordinates for {city}: {e}")
if feature_type == "Polygon":
if len(coordinates) < 3:
raise ValueError("Polygon requires at least 3 coordinates.")
# Close the polygon by appending the first point at the end
coordinates.append(coordinates[0])
coordinates = [coordinates] # Nest coordinates for Polygon
# Create the GeoJSON object
geojson_data = {
"type": "FeatureCollection",
"features": [
{
"type": "Feature",
"properties": properties,
"geometry": {
"type": feature_type,
"coordinates": coordinates,
},
}
],
}
return geojson_data
# Sort coordinates for a simple polygon (Reduce intersection points)
def sort_coordinates_for_simple_polygon(geojson):
# Extract coordinates from the GeoJSON
coordinates = geojson['features'][0]['geometry']['coordinates'][0]
# Remove the last point if it duplicates the first (GeoJSON convention for polygons)
if coordinates[0] == coordinates[-1]:
coordinates = coordinates[:-1]
# Calculate the centroid of the points
centroid_x = sum(point[0] for point in coordinates) / len(coordinates)
centroid_y = sum(point[1] for point in coordinates) / len(coordinates)
# Define a function to calculate the angle relative to the centroid
def angle_from_centroid(point):
dx = point[0] - centroid_x
dy = point[1] - centroid_y
return math.atan2(dy, dx)
# Sort points by their angle from the centroid
sorted_coordinates = sorted(coordinates, key=angle_from_centroid)
# Close the polygon by appending the first point to the end
sorted_coordinates.append(sorted_coordinates[0])
# Update the GeoJSON with sorted coordinates
geojson['features'][0]['geometry']['coordinates'][0] = sorted_coordinates
return geojson
# Generate static map image
@spaces.GPU
def generate_static_map(geojson_data, invisible=False):
m = StaticMap(600, 600)
logger.info(f"GeoJSON data: {geojson_data}")
for feature in geojson_data["features"]:
geom_type = feature["geometry"]["type"]
coords = feature["geometry"]["coordinates"]
if geom_type == "Point":
m.add_marker(CircleMarker((coords[0][0], coords[0][1]), '#1C00ff00' if invisible else '#42445A85', 100))
elif geom_type in ["MultiPoint", "LineString"]:
for coord in coords:
m.add_marker(CircleMarker((coord[0], coord[1]), '#1C00ff00' if invisible else '#42445A85', 100))
elif geom_type in ["Polygon", "MultiPolygon"]:
for polygon in coords:
m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], '#1C00ff00' if invisible else '#42445A85', 3))
return m.render()
# ControlNet pipeline setup
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16)
pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
"stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16
)
pipeline.to('cuda')
@spaces.GPU
def make_inpaint_condition(init_image, mask_image):
init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0
mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0
assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size"
init_image[mask_image > 0.5] = -1.0 # set as masked pixel
init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2)
init_image = torch.from_numpy(init_image)
return init_image
@spaces.GPU
def generate_satellite_image(init_image, mask_image, prompt):
control_image = make_inpaint_condition(init_image, mask_image)
result = pipeline(
prompt=prompt,
image=init_image,
mask_image=mask_image,
control_image=control_image,
strength=0.47,
guidance_scale=95,
num_inference_steps=250
)
return result.images[0]
# Gradio UI
@spaces.GPU
def handle_query(query):
response = process_openai_response(query)
geojson_data = generate_geojson(response)
if geojson_data["features"][0]["geometry"]["type"] == 'Polygon':
geojson_data_coords = sort_coordinates_for_simple_polygon(geojson_data)
map_image = generate_static_map(geojson_data_coords)
else:
map_image = generate_static_map(geojson_data)
empty_map_image = generate_static_map(geojson_data, invisible=True)
difference = np.abs(np.array(map_image.convert("RGB")) - np.array(empty_map_image.convert("RGB")))
threshold = 10
mask = (np.sum(difference, axis=-1) > threshold).astype(np.uint8) * 255
mask_image = Image.fromarray(mask, mode="L")
satellite_image = generate_satellite_image(
empty_map_image, mask_image, response['output']['feature_representation']['properties']['description']
)
return map_image, satellite_image, empty_map_image, mask_image, response
def update_query(selected_query):
return selected_query
query_options = [
"Area covering south asian subcontinent",
"Mark a triangular area using New York, Boston, and Texas",
"Mark cities in India",
"Show me Lotus Tower in a Map",
"Mark the area of west germany",
"Mark the area of the Amazon rainforest",
"Mark the area of the Sahara desert"
]
with gr.Blocks() as demo:
with gr.Row():
selected_query = gr.Dropdown(label="Select Query", choices=query_options, value=query_options[-1])
query_input = gr.Textbox(label="Enter Query", value=query_options[-1])
selected_query.change(update_query, inputs=selected_query, outputs=query_input)
submit_btn = gr.Button("Submit")
with gr.Row():
map_output = gr.Image(label="Map Visualization")
satellite_output = gr.Image(label="Generated Map Image")
with gr.Row():
empty_map_output = gr.Image(label="Empty Visualization")
mask_output = gr.Image(label="Mask")
image_prompt = gr.Textbox(label="Image Prompt Used")
submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, satellite_output, empty_map_output, mask_output, image_prompt])
if __name__ == "__main__":
demo.launch()