import os import json import numpy as np import torch from PIL import Image, ImageDraw import gradio as gr from openai import OpenAI from geopy.geocoders import Nominatim from staticmap import StaticMap, CircleMarker, Polygon from diffusers import ControlNetModel, StableDiffusionControlNetInpaintPipeline import spaces import logging import math from typing import List, Union # Set up logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) # Initialize APIs openai_client = OpenAI(api_key=os.environ['OPENAI_API_KEY']) geolocator = Nominatim(user_agent="geoapi") # Function to fetch coordinates @spaces.GPU def get_geo_coordinates(location_name): try: location = geolocator.geocode(location_name) if location: return [location.longitude, location.latitude] return None except Exception as e: logger.error(f"Error fetching coordinates for {location_name}: {e}") return None # Function to process OpenAI chat response @spaces.GPU def process_openai_response(query): response = openai_client.chat.completions.create( model="gpt-4o-mini", messages=[ { "role": "system", "content": """ You are an assistant that generates structured JSON output for geographical queries with city names. Your task is to generate a JSON object containing information about geographical features and their representation based on the user's query. Follow these rules: 1. The JSON should always have the following structure: { "input": "", "output": { "answer": "", "feature_representation": { "type": "", "cities": [""], "properties": { "description": "" } } } } 2. For the `type` field in `feature_representation`: - Use "Point" for single city queries. - Use "MultiPoint" for queries involving multiple cities not forming a line or area. - Use "LineString" for queries about paths between two or more cities. - Use "Polygon" for queries about areas formed by three or more cities. 3. For the `cities` field: - List the names of cities mentioned in the query in the order they appear. - If no cities are mentioned, try to add them with your knowledge. 4. For the `properties.description` field: - Describe the geographical feature in a creative way, suitable for generating an image with a diffusion model. ### Example Input: "Mark a triangular area of 3 US cities." ### Example Output: { "input": "Mark a triangular area of 3 US cities.", "output": { "answer": "The cities New York, Boston, and Philadelphia form a triangle.", "feature_representation": { "type": "Polygon", "cities": ["New York", "Boston", "Philadelphia"], "properties": { "description": "A satellite image of a triangular area formed by New York, Boston, and Philadelphia, with green fields and urban regions, 4k resolution, highly detailed." } } } } Generate similar JSON for the following query: """ }, { "role": "user", "content": query } ], temperature=1, max_tokens=2048, top_p=1, frequency_penalty=0, presence_penalty=0, response_format={"type": "json_object"} ) return json.loads(response.choices[0].message.content) # Generate GeoJSON from OpenAI response @spaces.GPU def generate_geojson(response): logger.info(f"OpenAI response: {response}") feature_type = response['output']['feature_representation']['type'] city_names = response['output']['feature_representation']['cities'] properties = response['output']['feature_representation']['properties'] coordinates = [] # Fetch coordinates for cities for city in city_names: try: coord = get_geo_coordinates(city) if coord: coordinates.append(coord) else: logger.warning(f"Coordinates not found for city: {city}") except Exception as e: logger.error(f"Error fetching coordinates for {city}: {e}") if feature_type == "Polygon": if len(coordinates) < 3: raise ValueError("Polygon requires at least 3 coordinates.") # Close the polygon by appending the first point at the end coordinates.append(coordinates[0]) coordinates = [coordinates] # Nest coordinates for Polygon # Create the GeoJSON object geojson_data = { "type": "FeatureCollection", "features": [ { "type": "Feature", "properties": properties, "geometry": { "type": feature_type, "coordinates": coordinates, }, } ], } return geojson_data # Sort coordinates for a simple polygon (Reduce intersection points) def sort_coordinates_for_simple_polygon(geojson): # Extract coordinates from the GeoJSON coordinates = geojson['features'][0]['geometry']['coordinates'][0] # Remove the last point if it duplicates the first (GeoJSON convention for polygons) if coordinates[0] == coordinates[-1]: coordinates = coordinates[:-1] # Calculate the centroid of the points centroid_x = sum(point[0] for point in coordinates) / len(coordinates) centroid_y = sum(point[1] for point in coordinates) / len(coordinates) # Define a function to calculate the angle relative to the centroid def angle_from_centroid(point): dx = point[0] - centroid_x dy = point[1] - centroid_y return math.atan2(dy, dx) # Sort points by their angle from the centroid sorted_coordinates = sorted(coordinates, key=angle_from_centroid) # Close the polygon by appending the first point to the end sorted_coordinates.append(sorted_coordinates[0]) # Update the GeoJSON with sorted coordinates geojson['features'][0]['geometry']['coordinates'][0] = sorted_coordinates return geojson # Generate static map image @spaces.GPU def generate_static_map(geojson_data, invisible=False): m = StaticMap(600, 600) logger.info(f"GeoJSON data: {geojson_data}") for feature in geojson_data["features"]: geom_type = feature["geometry"]["type"] coords = feature["geometry"]["coordinates"] if geom_type == "Point": m.add_marker(CircleMarker((coords[0][0], coords[0][1]), '#1C00ff00' if invisible else '#42445A85', 100)) elif geom_type in ["MultiPoint", "LineString"]: for coord in coords: m.add_marker(CircleMarker((coord[0], coord[1]), '#1C00ff00' if invisible else '#42445A85', 100)) elif geom_type in ["Polygon", "MultiPolygon"]: for polygon in coords: m.add_polygon(Polygon([(c[0], c[1]) for c in polygon], '#1C00ff00' if invisible else '#42445A85', 3)) return m.render() # ControlNet pipeline setup controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11p_sd15_inpaint", torch_dtype=torch.float16) pipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained( "stable-diffusion-v1-5/stable-diffusion-inpainting", controlnet=controlnet, torch_dtype=torch.float16 ) pipeline.to('cuda') @spaces.GPU def make_inpaint_condition(init_image, mask_image): init_image = np.array(init_image.convert("RGB")).astype(np.float32) / 255.0 mask_image = np.array(mask_image.convert("L")).astype(np.float32) / 255.0 assert init_image.shape[0:1] == mask_image.shape[0:1], "image and image_mask must have the same image size" init_image[mask_image > 0.5] = -1.0 # set as masked pixel init_image = np.expand_dims(init_image, 0).transpose(0, 3, 1, 2) init_image = torch.from_numpy(init_image) return init_image @spaces.GPU def generate_satellite_image(init_image, mask_image, prompt): control_image = make_inpaint_condition(init_image, mask_image) result = pipeline( prompt=prompt, image=init_image, mask_image=mask_image, control_image=control_image, strength=0.47, guidance_scale=95, num_inference_steps=250 ) return result.images[0] # Gradio UI @spaces.GPU def handle_query(query): response = process_openai_response(query) geojson_data = generate_geojson(response) if geojson_data["features"][0]["geometry"]["type"] == 'Polygon': geojson_data_coords = sort_coordinates_for_simple_polygon(geojson_data) map_image = generate_static_map(geojson_data_coords) else: map_image = generate_static_map(geojson_data) empty_map_image = generate_static_map(geojson_data, invisible=True) difference = np.abs(np.array(map_image.convert("RGB")) - np.array(empty_map_image.convert("RGB"))) threshold = 10 mask = (np.sum(difference, axis=-1) > threshold).astype(np.uint8) * 255 mask_image = Image.fromarray(mask, mode="L") satellite_image = generate_satellite_image( empty_map_image, mask_image, response['output']['feature_representation']['properties']['description'] ) return map_image, satellite_image, empty_map_image, mask_image, response def update_query(selected_query): return selected_query query_options = [ "Area covering south asian subcontinent", "Mark a triangular area using New York, Boston, and Texas", "Mark cities in India", "Show me Lotus Tower in a Map", "Mark the area of west germany", "Mark the area of the Amazon rainforest", "Mark the area of the Sahara desert" ] with gr.Blocks() as demo: with gr.Row(): selected_query = gr.Dropdown(label="Select Query", choices=query_options, value=query_options[-1]) query_input = gr.Textbox(label="Enter Query", value=query_options[-1]) selected_query.change(update_query, inputs=selected_query, outputs=query_input) submit_btn = gr.Button("Submit") with gr.Row(): map_output = gr.Image(label="Map Visualization") satellite_output = gr.Image(label="Generated Map Image") with gr.Row(): empty_map_output = gr.Image(label="Empty Visualization") mask_output = gr.Image(label="Mask") image_prompt = gr.Textbox(label="Image Prompt Used") submit_btn.click(handle_query, inputs=[query_input], outputs=[map_output, satellite_output, empty_map_output, mask_output, image_prompt]) if __name__ == "__main__": demo.launch()