|
import os |
|
import pyperclip |
|
import gradio as gr |
|
import nltk |
|
import pytesseract |
|
import google.generativeai as genai |
|
from nltk.tokenize import sent_tokenize |
|
from transformers import * |
|
import torch |
|
from tqdm import tqdm |
|
import time |
|
|
|
|
|
nltk.download('punkt') |
|
|
|
OCR_TR_DESCRIPTION = '''# OCR Translate and Summary GeminiPro |
|
<div id="content_align">OCR system based on Tesseract</div>''' |
|
|
|
|
|
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1] |
|
|
|
|
|
def ocr_lang(lang_list): |
|
lang_str = "" |
|
lang_len = len(lang_list) |
|
if lang_len == 1: |
|
return lang_list[0] |
|
else: |
|
for i in range(lang_len): |
|
lang_list.insert(lang_len - i, "+") |
|
|
|
lang_str = "".join(lang_list[:-1]) |
|
return lang_str |
|
|
|
|
|
|
|
def ocr_tesseract(img, languages): |
|
ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages)) |
|
return ocr_str |
|
|
|
|
|
|
|
def clear_content(): |
|
return None |
|
|
|
|
|
import pyperclip |
|
|
|
|
|
def cp_text(input_text): |
|
try: |
|
pyperclip.copy(input_text) |
|
except Exception as e: |
|
print("Error occurred while copying to clipboard") |
|
print(e) |
|
|
|
|
|
def cp_clear(): |
|
pyperclip.clear() |
|
|
|
|
|
def process_text_input_text(input_text): |
|
|
|
chunks = [input_text[i:i+2000] for i in range(0, len(input_text), 2000)] |
|
return chunks |
|
|
|
def process_and_translate(api_key, input_text, src_lang, tgt_lang): |
|
|
|
chunks = process_text_input_text(input_text) |
|
|
|
|
|
translated_chunks = [] |
|
for chunk in chunks: |
|
if chunk is None or chunk == "": |
|
translated_chunks.append("System prompt: There is no content to translate!") |
|
else: |
|
prompt = f"This is an {src_lang} to {tgt_lang} translation, please provide the {tgt_lang} translation for this paragraph. Do not provide any explanations or text apart from the translation.\n{src_lang}: " |
|
|
|
|
|
genai.configure(api_key=api_key) |
|
|
|
generation_config = { |
|
"candidateCount": 1, |
|
"maxOutputTokens": 2048, |
|
"temperature": 0.3, |
|
"topP": 1 |
|
} |
|
|
|
safety_settings = [ |
|
{ |
|
"category": "HARM_CATEGORY_HARASSMENT", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_HATE_SPEECH", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
] |
|
|
|
model = genai.GenerativeModel(model_name='gemini-pro') |
|
response = model.generate_content([prompt, chunk], |
|
|
|
safety_settings=safety_settings |
|
) |
|
translated_chunks.append(response.text) |
|
|
|
|
|
response = '\n\n'.join(translated_chunks) |
|
|
|
return response |
|
|
|
def process_and_summary(api_key, input_text, src_lang, tgt_lang): |
|
|
|
chunks = process_text_input_text(input_text) |
|
time.sleep(30) |
|
|
|
|
|
translated_chunks = [] |
|
for chunk in chunks: |
|
if chunk is None or chunk == "": |
|
translated_chunks.append("System prompt: There is no content to translate!") |
|
else: |
|
prompt = f"This is an {src_lang} to {tgt_lang} summarization and knowledge key points, please provide the {tgt_lang} summarization and list the {tgt_lang} knowledge key points for this sentence. Do not provide any explanations or text apart from the summarization.\n{src_lang}: " |
|
genai.configure(api_key=api_key) |
|
|
|
generation_config = { |
|
"candidateCount": 1, |
|
"maxOutputTokens": 2048, |
|
"temperature": 0.3, |
|
"topP": 1 |
|
} |
|
|
|
safety_settings = [ |
|
{ |
|
"category": "HARM_CATEGORY_HARASSMENT", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_HATE_SPEECH", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
{ |
|
"category": "HARM_CATEGORY_DANGEROUS_CONTENT", |
|
"threshold": "BLOCK_NONE", |
|
}, |
|
] |
|
|
|
model = genai.GenerativeModel(model_name='gemini-pro') |
|
response = model.generate_content([prompt, chunk], |
|
|
|
safety_settings=safety_settings |
|
) |
|
translated_chunks.append(response.text) |
|
|
|
|
|
response = '\n\n*Next Paragraph*\n\n'.join(translated_chunks) |
|
|
|
return response |
|
|
|
|
|
|
|
|
|
def main(): |
|
|
|
with gr.Blocks(css='style.css') as ocr_tr: |
|
gr.Markdown(OCR_TR_DESCRIPTION) |
|
|
|
|
|
with gr.Box(): |
|
|
|
with gr.Row(): |
|
gr.Markdown("### Step 01: Text Extraction") |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Row(): |
|
inputs_img = gr.Image(image_mode="RGB", source="upload", type="pil", label="image") |
|
with gr.Row(): |
|
inputs_lang = gr.CheckboxGroup(choices=["chi_sim", "eng"], |
|
type="value", |
|
value=['eng'], |
|
label='language') |
|
|
|
with gr.Row(): |
|
clear_img_btn = gr.Button('Clear') |
|
ocr_btn = gr.Button(value='OCR Extraction', variant="primary") |
|
|
|
with gr.Row(): |
|
|
|
gr.Markdown("[Click here to get API key](https://makersuite.google.com/u/1/app/apikey)") |
|
|
|
with gr.Row(): |
|
|
|
inputs_api_key = gr.Textbox(label="Please enter your API key here", type="password") |
|
|
|
with gr.Column(): |
|
with gr.Row(): |
|
outputs_text = gr.Textbox(label="Extract content", lines=20) |
|
src_lang = gr.inputs.Dropdown(choices=["Chinese (Simplified)", "Chinese (Traditional)", "English", "Japanese", "Korean"], |
|
default="English", label='source language') |
|
tgt_lang = gr.inputs.Dropdown(choices=["Chinese (Simplified)", "Chinese (Traditional)", "English", "Japanese", "Korean"], |
|
default="Chinese (Traditional)", label='target language') |
|
with gr.Row(): |
|
clear_text_btn = gr.Button('Clear') |
|
translate_btn = gr.Button(value='Translate', variant="primary") |
|
summary_btn = gr.Button(value='Summary', variant="primary") |
|
|
|
|
|
with gr.Row(): |
|
pass |
|
|
|
|
|
with gr.Box(): |
|
|
|
with gr.Row(): |
|
gr.Markdown("### Step 02: Process") |
|
|
|
with gr.Row(): |
|
outputs_tr_text = gr.Textbox(label="Process Content", lines=20) |
|
|
|
with gr.Row(): |
|
cp_clear_btn = gr.Button(value='Clear Clipboard') |
|
cp_btn = gr.Button(value='Copy to clipboard', variant="primary") |
|
|
|
|
|
ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[ |
|
outputs_text,]) |
|
clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img]) |
|
|
|
|
|
translate_btn.click(fn=process_and_translate, inputs=[inputs_api_key, outputs_text, src_lang, tgt_lang], outputs=[outputs_tr_text]) |
|
summary_btn.click(fn=process_and_summary, inputs=[inputs_api_key, outputs_text, src_lang, tgt_lang], outputs=[outputs_tr_text]) |
|
clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text]) |
|
|
|
|
|
cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[]) |
|
cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[]) |
|
|
|
|
|
ocr_tr.launch(inbrowser=True) |
|
|
|
if __name__ == '__main__': |
|
main() |