File size: 10,290 Bytes
c6d26b8
6c60394
c6d26b8
 
 
6c60394
c6d26b8
6c60394
 
 
9e4aac4
c6d26b8
6c60394
c6d26b8
 
5f1dbf2
 
c6d26b8
6c60394
c6d26b8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c60394
 
c6d26b8
 
 
6c60394
c6d26b8
6c60394
c6d26b8
 
 
 
6c60394
c6d26b8
aa0d25a
581b5dc
aa0d25a
 
581b5dc
 
5f1dbf2
581b5dc
 
 
 
 
 
 
 
 
aa0d25a
 
 
581b5dc
aa0d25a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581b5dc
aa0d25a
 
581b5dc
 
 
 
aa0d25a
581b5dc
 
 
5f1dbf2
 
 
9e4aac4
5f1dbf2
 
 
 
 
 
 
 
 
aa0d25a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f1dbf2
aa0d25a
 
5f1dbf2
 
 
 
aa0d25a
5f1dbf2
 
 
 
 
c6d26b8
 
 
 
 
 
 
 
 
 
e59da9c
c6d26b8
 
 
 
 
 
 
 
 
 
 
 
 
e59da9c
c6d26b8
c552435
146a1c2
 
c552435
146a1c2
 
 
581b5dc
c6d26b8
 
 
5f1dbf2
 
 
 
c6d26b8
 
e59da9c
5f1dbf2
c6d26b8
c552435
c6d26b8
6c60394
c6d26b8
 
 
 
 
5f1dbf2
c6d26b8
 
5f1dbf2
c6d26b8
 
e59da9c
 
c6d26b8
 
 
 
 
 
 
5f1dbf2
 
c6d26b8
 
 
 
 
aa0d25a
c6d26b8
2bd6ff5
c6d26b8
 
962af02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import os
import pyperclip
import gradio as gr
import nltk
import pytesseract
import google.generativeai as genai
from nltk.tokenize import sent_tokenize
from transformers import *
import torch
from tqdm import tqdm  # Import tqdm
import time

# Download necessary data for nltk
nltk.download('punkt')

OCR_TR_DESCRIPTION = '''# OCR Translate and Summary GeminiPro
<div id="content_align">OCR system based on Tesseract</div>'''

# Getting the list of available languages for Tesseract
choices = os.popen('tesseract --list-langs').read().split('\n')[1:-1]

# tesseract语言列表转pytesseract语言
def ocr_lang(lang_list):
    lang_str = ""
    lang_len = len(lang_list)
    if lang_len == 1:
        return lang_list[0]
    else:
        for i in range(lang_len):
            lang_list.insert(lang_len - i, "+")

        lang_str = "".join(lang_list[:-1])
        return lang_str


# ocr tesseract
def ocr_tesseract(img, languages):
    ocr_str = pytesseract.image_to_string(img, lang=ocr_lang(languages))
    return ocr_str


# 清除
def clear_content():
    return None


import pyperclip

# 复制到剪贴板
def cp_text(input_text):
    try:
        pyperclip.copy(input_text)
    except Exception as e:
        print("Error occurred while copying to clipboard")
        print(e)

# 清除剪贴板
def cp_clear():
    pyperclip.clear()

# Split the text into 2000 character chunks
def process_text_input_text(input_text):
    # Split the text into 2000 character chunks
    chunks = [input_text[i:i+2000] for i in range(0, len(input_text), 2000)]
    return chunks

def process_and_translate(api_key, input_text, src_lang, tgt_lang):
    # Process the input text into chunks
    chunks = process_text_input_text(input_text)

    # Translate each chunk and collect the results
    translated_chunks = []
    for chunk in chunks:
        if chunk is None or chunk == "":
            translated_chunks.append("System prompt: There is no content to translate!")
        else:
            prompt = f"This is an {src_lang} to {tgt_lang} translation, please provide the {tgt_lang} translation for this paragraph. Do not provide any explanations or text apart from the translation.\n{src_lang}: "
            #prompt = f"This is an {src_lang} to {tgt_lang} translation, please provide the {tgt_lang} translation for this sentence. Do not provide any explanations or text apart from the translation.\n{src_lang}: "

            genai.configure(api_key=api_key)

            generation_config = {
                                    "candidateCount": 1,
                                    "maxOutputTokens": 2048,
                                    "temperature": 0.3,
                                    "topP": 1
            }

            safety_settings = [
                    {
                        "category": "HARM_CATEGORY_HARASSMENT",
                        "threshold": "BLOCK_NONE",
                    },
                    {
                        "category": "HARM_CATEGORY_HATE_SPEECH",
                        "threshold": "BLOCK_NONE",
                    },
                    {
                        "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                        "threshold": "BLOCK_NONE",
                    },
                    {
                        "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                        "threshold": "BLOCK_NONE",
                    },
            ]

            model = genai.GenerativeModel(model_name='gemini-pro')
            response = model.generate_content([prompt, chunk],
                        #generation_config=generation_config, 
                        safety_settings=safety_settings
                    )
            translated_chunks.append(response.text)

    # Join the translated chunks back together into a single string
    response = '\n\n'.join(translated_chunks)

    return response

def process_and_summary(api_key, input_text, src_lang, tgt_lang):
    # Process the input text into chunks
    chunks = process_text_input_text(input_text)
    time.sleep(30)

    # Translate each chunk and collect the results
    translated_chunks = []
    for chunk in chunks:
        if chunk is None or chunk == "":
            translated_chunks.append("System prompt: There is no content to translate!")
        else:
            prompt = f"This is an {src_lang} to {tgt_lang} summarization and knowledge key points, please provide the {tgt_lang} summarization and list the {tgt_lang} knowledge key points for this sentence. Do not provide any explanations or text apart from the summarization.\n{src_lang}: "
            genai.configure(api_key=api_key)

            generation_config = {
                                    "candidateCount": 1,
                                    "maxOutputTokens": 2048,
                                    "temperature": 0.3,
                                    "topP": 1
            }

            safety_settings = [
                    {
                        "category": "HARM_CATEGORY_HARASSMENT",
                        "threshold": "BLOCK_NONE",
                    },
                    {
                        "category": "HARM_CATEGORY_HATE_SPEECH",
                        "threshold": "BLOCK_NONE",
                    },
                    {
                        "category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
                        "threshold": "BLOCK_NONE",
                    },
                    {
                        "category": "HARM_CATEGORY_DANGEROUS_CONTENT",
                        "threshold": "BLOCK_NONE",
                    },
            ]

            model = genai.GenerativeModel(model_name='gemini-pro')
            response = model.generate_content([prompt, chunk],
                        #generation_config=generation_config, 
                        safety_settings=safety_settings
                    )
            translated_chunks.append(response.text)

    # Join the translated chunks back together into a single string
    response = '\n\n*Next Paragraph*\n\n'.join(translated_chunks)

    return response

# prompt = f"Display language is {tgt_lang}, do not display original text, As a Knowledge Video Content Analysis Expert, specialize in analyzing knowledge videos, identifying and clearly explaining key points in {tgt_lang}, ensuring accurate, easy-to-understand summaries suitable for diverse audiences, analyze, list key points, and explain detailedly below text: "


def main():

    with gr.Blocks(css='style.css') as ocr_tr:
        gr.Markdown(OCR_TR_DESCRIPTION)

        # -------------- OCR 文字提取 --------------
        with gr.Box():

            with gr.Row():
                gr.Markdown("### Step 01: Text Extraction")

            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        inputs_img = gr.Image(image_mode="RGB", source="upload", type="pil", label="image")
                    with gr.Row():
                        inputs_lang = gr.CheckboxGroup(choices=["chi_sim", "eng"],
                                                       type="value",
                                                       value=['eng'],
                                                       label='language')

                    with gr.Row():
                        clear_img_btn = gr.Button('Clear')
                        ocr_btn = gr.Button(value='OCR Extraction', variant="primary")

                    with gr.Row():
                        # Use Markdown to display clickable URL
                        gr.Markdown("[Click here to get API key](https://makersuite.google.com/u/1/app/apikey)")

                    with gr.Row():
                        # Create a text input box for users to enter their API key
                        inputs_api_key = gr.Textbox(label="Please enter your API key here", type="password")

                with gr.Column():
                    with gr.Row():
                        outputs_text = gr.Textbox(label="Extract content", lines=20)
                    src_lang = gr.inputs.Dropdown(choices=["Chinese (Simplified)", "Chinese (Traditional)", "English", "Japanese", "Korean"], 
                                                           default="English", label='source language')
                    tgt_lang = gr.inputs.Dropdown(choices=["Chinese (Simplified)", "Chinese (Traditional)", "English", "Japanese", "Korean"], 
                                                           default="Chinese (Traditional)", label='target language')
                    with gr.Row():
                        clear_text_btn = gr.Button('Clear')
                        translate_btn = gr.Button(value='Translate', variant="primary")
                        summary_btn = gr.Button(value='Summary', variant="primary")


            with gr.Row():
                pass

        # -------------- 翻译 --------------
        with gr.Box():

            with gr.Row():
                gr.Markdown("### Step 02: Process")

            with gr.Row():
                outputs_tr_text = gr.Textbox(label="Process Content", lines=20)

            with gr.Row():
                cp_clear_btn = gr.Button(value='Clear Clipboard')
                cp_btn = gr.Button(value='Copy to clipboard', variant="primary")

        # ---------------------- OCR Tesseract ----------------------
        ocr_btn.click(fn=ocr_tesseract, inputs=[inputs_img, inputs_lang], outputs=[
            outputs_text,])
        clear_img_btn.click(fn=clear_content, inputs=[], outputs=[inputs_img])

        # ---------------------- 翻译 ----------------------
        translate_btn.click(fn=process_and_translate, inputs=[inputs_api_key, outputs_text, src_lang, tgt_lang], outputs=[outputs_tr_text])
        summary_btn.click(fn=process_and_summary, inputs=[inputs_api_key, outputs_text, src_lang, tgt_lang], outputs=[outputs_tr_text])
        clear_text_btn.click(fn=clear_content, inputs=[], outputs=[outputs_text])

        # ---------------------- 复制到剪贴板 ----------------------
        cp_btn.click(fn=cp_text, inputs=[outputs_tr_text], outputs=[])
        cp_clear_btn.click(fn=cp_clear, inputs=[], outputs=[])
        

    ocr_tr.launch(inbrowser=True)

if __name__ == '__main__':
    main()