Spaces:
Sleeping
Sleeping
A newer version of the Gradio SDK is available:
5.29.0
metadata
title: Pneumonia Detection System
emoji: π©Ί
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 3.1.4
app_file: app.py
pinned: false
Pneumonia Detection System
A Flask-based web application that uses a fine-tuned VGG19 model to detect pneumonia from chest X-ray images.
Model Links
Setup Instructions
Prerequisites
- Python 3.8 or higher
Installation
- Clone the repository:
git clone https://github.com/yourusername/Pneumono_Detect.git
cd Pneumono_Detect
- Set up the environment:
Windows:
./setup.bat
Linux/Mac:
chmod +x setup.sh
./setup.sh
Activating the Environment
Windows:
tf_test_env\Scripts\activate
Linux/Mac:
source tf_test_env/bin/activate
Running the Application
- Ensure your virtual environment is activated
- Run the Flask application:
python app.py
- Open a web browser and navigate to
http://localhost:5000
Usage
- Upload a chest X-ray image through the web interface
- Click "Predict" to get the classification result
- View the prediction result and confidence score
Project Structure
Pneumono_Detect/
βββ app.py # Flask application
βββ requirements.txt # Python dependencies
βββ setup.bat # Windows setup script
βββ setup.sh # Linux/Mac setup script
βββ static/
β βββ uploads/ # Folder for uploaded images
βββ templates/
βββ index.html # Upload page
βββ result.html # Results page
Model Information
- Architecture: VGG19 (fine-tuned)
- Input Size: 128x128x3
- Classes: NORMAL, PNEUMONIA
- Confidence Threshold: 0.7
Dependencies
- Flask 3.1.0
- TensorFlow 2.12.0
- Pillow 10.2.0
- NumPy 1.23.5