PneumoniaDetection / README.md
SoulMind01
Added hugging template to `README.md`
c19ff11

A newer version of the Gradio SDK is available: 5.29.0

Upgrade
metadata
title: Pneumonia Detection System
emoji: 🩺
colorFrom: blue
colorTo: green
sdk: gradio
sdk_version: 3.1.4
app_file: app.py
pinned: false

Pneumonia Detection System

A Flask-based web application that uses a fine-tuned VGG19 model to detect pneumonia from chest X-ray images.

Model Links

Setup Instructions

Prerequisites

  • Python 3.8 or higher

Installation

  1. Clone the repository:
git clone https://github.com/yourusername/Pneumono_Detect.git
cd Pneumono_Detect
  1. Set up the environment:

Windows:

./setup.bat

Linux/Mac:

chmod +x setup.sh
./setup.sh

Activating the Environment

Windows:

tf_test_env\Scripts\activate

Linux/Mac:

source tf_test_env/bin/activate

Running the Application

  1. Ensure your virtual environment is activated
  2. Run the Flask application:
python app.py
  1. Open a web browser and navigate to http://localhost:5000

Usage

  1. Upload a chest X-ray image through the web interface
  2. Click "Predict" to get the classification result
  3. View the prediction result and confidence score

Project Structure

Pneumono_Detect/
β”œβ”€β”€ app.py                  # Flask application
β”œβ”€β”€ requirements.txt        # Python dependencies
β”œβ”€β”€ setup.bat              # Windows setup script
β”œβ”€β”€ setup.sh               # Linux/Mac setup script
β”œβ”€β”€ static/
β”‚   └── uploads/           # Folder for uploaded images
└── templates/
    β”œβ”€β”€ index.html         # Upload page
    └── result.html        # Results page

Model Information

  • Architecture: VGG19 (fine-tuned)
  • Input Size: 128x128x3
  • Classes: NORMAL, PNEUMONIA
  • Confidence Threshold: 0.7

Dependencies

  • Flask 3.1.0
  • TensorFlow 2.12.0
  • Pillow 10.2.0
  • NumPy 1.23.5