Files changed (4) hide show
  1. README.md +4 -3
  2. Utils/dbimutils.py +54 -0
  3. app.py +235 -300
  4. requirements.txt +2 -0
README.md CHANGED
@@ -1,12 +1,13 @@
1
  ---
2
- title: WaifuDiffusion Tagger
3
  emoji: 💬
4
  colorFrom: blue
5
  colorTo: red
6
  sdk: gradio
7
- sdk_version: 5.14.0
8
  app_file: app.py
9
  pinned: false
 
10
  ---
11
 
12
  # Configuration
@@ -35,4 +36,4 @@ Path to your main application file (which contains either `gradio` or `streamlit
35
  Path is relative to the root of the repository.
36
 
37
  `pinned`: _boolean_
38
- Whether the Space stays on top of your list.
 
1
  ---
2
+ title: WaifuDiffusion v1.4 Tags
3
  emoji: 💬
4
  colorFrom: blue
5
  colorTo: red
6
  sdk: gradio
7
+ sdk_version: 3.16.2
8
  app_file: app.py
9
  pinned: false
10
+ duplicated_from: NoCrypt/DeepDanbooru_string
11
  ---
12
 
13
  # Configuration
 
36
  Path is relative to the root of the repository.
37
 
38
  `pinned`: _boolean_
39
+ Whether the Space stays on top of your list.
Utils/dbimutils.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DanBooru IMage Utility functions
2
+
3
+ import cv2
4
+ import numpy as np
5
+ from PIL import Image
6
+
7
+
8
+ def smart_imread(img, flag=cv2.IMREAD_UNCHANGED):
9
+ if img.endswith(".gif"):
10
+ img = Image.open(img)
11
+ img = img.convert("RGB")
12
+ img = cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR)
13
+ else:
14
+ img = cv2.imread(img, flag)
15
+ return img
16
+
17
+
18
+ def smart_24bit(img):
19
+ if img.dtype is np.dtype(np.uint16):
20
+ img = (img / 257).astype(np.uint8)
21
+
22
+ if len(img.shape) == 2:
23
+ img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
24
+ elif img.shape[2] == 4:
25
+ trans_mask = img[:, :, 3] == 0
26
+ img[trans_mask] = [255, 255, 255, 255]
27
+ img = cv2.cvtColor(img, cv2.COLOR_BGRA2BGR)
28
+ return img
29
+
30
+
31
+ def make_square(img, target_size):
32
+ old_size = img.shape[:2]
33
+ desired_size = max(old_size)
34
+ desired_size = max(desired_size, target_size)
35
+
36
+ delta_w = desired_size - old_size[1]
37
+ delta_h = desired_size - old_size[0]
38
+ top, bottom = delta_h // 2, delta_h - (delta_h // 2)
39
+ left, right = delta_w // 2, delta_w - (delta_w // 2)
40
+
41
+ color = [255, 255, 255]
42
+ new_im = cv2.copyMakeBorder(
43
+ img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color
44
+ )
45
+ return new_im
46
+
47
+
48
+ def smart_resize(img, size):
49
+ # Assumes the image has already gone through make_square
50
+ if img.shape[0] > size:
51
+ img = cv2.resize(img, (size, size), interpolation=cv2.INTER_AREA)
52
+ elif img.shape[0] < size:
53
+ img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
54
+ return img
app.py CHANGED
@@ -1,4 +1,8 @@
 
 
1
  import argparse
 
 
2
  import os
3
 
4
  import gradio as gr
@@ -6,344 +10,275 @@ import huggingface_hub
6
  import numpy as np
7
  import onnxruntime as rt
8
  import pandas as pd
9
- from PIL import Image
 
 
10
 
11
- TITLE = "WaifuDiffusion Tagger"
12
- DESCRIPTION = """
13
- Demo for the WaifuDiffusion tagger models
14
 
15
- Example image by [ほし☆☆☆](https://www.pixiv.net/en/users/43565085)
16
- """
 
 
 
 
 
 
17
 
18
- HF_TOKEN = os.environ.get("HF_TOKEN", "")
19
 
20
- # Dataset v3 series of models:
21
- SWINV2_MODEL_DSV3_REPO = "SmilingWolf/wd-swinv2-tagger-v3"
22
- CONV_MODEL_DSV3_REPO = "SmilingWolf/wd-convnext-tagger-v3"
23
- VIT_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-tagger-v3"
24
- VIT_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-vit-large-tagger-v3"
25
- EVA02_LARGE_MODEL_DSV3_REPO = "SmilingWolf/wd-eva02-large-tagger-v3"
26
 
27
- # Dataset v2 series of models:
28
- MOAT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
29
- SWIN_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
30
- CONV_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
31
- CONV2_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
32
- VIT_MODEL_DSV2_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
33
 
34
- # IdolSankaku series of models:
35
- EVA02_LARGE_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-eva02-large-tagger-v1"
36
- SWINV2_MODEL_IS_DSV1_REPO = "deepghs/idolsankaku-swinv2-tagger-v1"
37
 
38
- # Files to download from the repos
 
 
 
 
 
39
  MODEL_FILENAME = "model.onnx"
40
  LABEL_FILENAME = "selected_tags.csv"
41
 
42
- # https://github.com/toriato/stable-diffusion-webui-wd14-tagger/blob/a9eacb1eff904552d3012babfa28b57e1d3e295c/tagger/ui.py#L368
43
- kaomojis = [
44
- "0_0",
45
- "(o)_(o)",
46
- "+_+",
47
- "+_-",
48
- "._.",
49
- "<o>_<o>",
50
- "<|>_<|>",
51
- "=_=",
52
- ">_<",
53
- "3_3",
54
- "6_9",
55
- ">_o",
56
- "@_@",
57
- "^_^",
58
- "o_o",
59
- "u_u",
60
- "x_x",
61
- "|_|",
62
- "||_||",
63
- ]
64
-
65
 
66
  def parse_args() -> argparse.Namespace:
67
  parser = argparse.ArgumentParser()
68
  parser.add_argument("--score-slider-step", type=float, default=0.05)
69
  parser.add_argument("--score-general-threshold", type=float, default=0.35)
70
  parser.add_argument("--score-character-threshold", type=float, default=0.85)
 
71
  return parser.parse_args()
72
 
73
 
74
- def load_labels(dataframe) -> list[str]:
75
- name_series = dataframe["name"]
76
- name_series = name_series.map(
77
- lambda x: x.replace("_", " ") if x not in kaomojis else x
78
  )
79
- tag_names = name_series.tolist()
80
-
81
- rating_indexes = list(np.where(dataframe["category"] == 9)[0])
82
- general_indexes = list(np.where(dataframe["category"] == 0)[0])
83
- character_indexes = list(np.where(dataframe["category"] == 4)[0])
84
- return tag_names, rating_indexes, general_indexes, character_indexes
85
-
86
-
87
- def mcut_threshold(probs):
88
- """
89
- Maximum Cut Thresholding (MCut)
90
- Largeron, C., Moulin, C., & Gery, M. (2012). MCut: A Thresholding Strategy
91
- for Multi-label Classification. In 11th International Symposium, IDA 2012
92
- (pp. 172-183).
93
- """
94
- sorted_probs = probs[probs.argsort()[::-1]]
95
- difs = sorted_probs[:-1] - sorted_probs[1:]
96
- t = difs.argmax()
97
- thresh = (sorted_probs[t] + sorted_probs[t + 1]) / 2
98
- return thresh
99
-
100
-
101
- class Predictor:
102
- def __init__(self):
103
- self.model_target_size = None
104
- self.last_loaded_repo = None
105
-
106
- def download_model(self, model_repo):
107
- csv_path = huggingface_hub.hf_hub_download(
108
- model_repo,
109
- LABEL_FILENAME,
110
- use_auth_token=HF_TOKEN,
111
- )
112
- model_path = huggingface_hub.hf_hub_download(
113
- model_repo,
114
- MODEL_FILENAME,
115
- use_auth_token=HF_TOKEN,
116
- )
117
- return csv_path, model_path
118
-
119
- def load_model(self, model_repo):
120
- if model_repo == self.last_loaded_repo:
121
- return
122
-
123
- csv_path, model_path = self.download_model(model_repo)
124
-
125
- tags_df = pd.read_csv(csv_path)
126
- sep_tags = load_labels(tags_df)
127
-
128
- self.tag_names = sep_tags[0]
129
- self.rating_indexes = sep_tags[1]
130
- self.general_indexes = sep_tags[2]
131
- self.character_indexes = sep_tags[3]
132
-
133
- model = rt.InferenceSession(model_path)
134
- _, height, width, _ = model.get_inputs()[0].shape
135
- self.model_target_size = height
136
-
137
- self.last_loaded_repo = model_repo
138
- self.model = model
139
-
140
- def prepare_image(self, image):
141
- target_size = self.model_target_size
142
-
143
- canvas = Image.new("RGBA", image.size, (255, 255, 255))
144
- canvas.alpha_composite(image)
145
- image = canvas.convert("RGB")
146
 
147
- # Pad image to square
148
- image_shape = image.size
149
- max_dim = max(image_shape)
150
- pad_left = (max_dim - image_shape[0]) // 2
151
- pad_top = (max_dim - image_shape[1]) // 2
152
 
153
- padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
154
- padded_image.paste(image, (pad_left, pad_top))
155
 
156
- # Resize
157
- if max_dim != target_size:
158
- padded_image = padded_image.resize(
159
- (target_size, target_size),
160
- Image.BICUBIC,
161
- )
 
 
 
 
162
 
163
- # Convert to numpy array
164
- image_array = np.asarray(padded_image, dtype=np.float32)
165
 
166
- # Convert PIL-native RGB to BGR
167
- image_array = image_array[:, :, ::-1]
168
 
169
- return np.expand_dims(image_array, axis=0)
170
-
171
- def predict(
172
- self,
173
- image,
174
- model_repo,
175
- general_thresh,
176
- general_mcut_enabled,
177
- character_thresh,
178
- character_mcut_enabled,
179
- ):
180
- self.load_model(model_repo)
181
-
182
- image = self.prepare_image(image)
183
-
184
- input_name = self.model.get_inputs()[0].name
185
- label_name = self.model.get_outputs()[0].name
186
- preds = self.model.run([label_name], {input_name: image})[0]
187
-
188
- labels = list(zip(self.tag_names, preds[0].astype(float)))
189
-
190
- # First 4 labels are actually ratings: pick one with argmax
191
- ratings_names = [labels[i] for i in self.rating_indexes]
192
- rating = dict(ratings_names)
193
-
194
- # Then we have general tags: pick any where prediction confidence > threshold
195
- general_names = [labels[i] for i in self.general_indexes]
196
-
197
- if general_mcut_enabled:
198
- general_probs = np.array([x[1] for x in general_names])
199
- general_thresh = mcut_threshold(general_probs)
200
-
201
- general_res = [x for x in general_names if x[1] > general_thresh]
202
- general_res = dict(general_res)
203
-
204
- # Everything else is characters: pick any where prediction confidence > threshold
205
- character_names = [labels[i] for i in self.character_indexes]
206
 
207
- if character_mcut_enabled:
208
- character_probs = np.array([x[1] for x in character_names])
209
- character_thresh = mcut_threshold(character_probs)
210
- character_thresh = max(0.15, character_thresh)
 
211
 
212
- character_res = [x for x in character_names if x[1] > character_thresh]
213
- character_res = dict(character_res)
214
 
215
- sorted_general_strings = sorted(
216
- general_res.items(),
217
- key=lambda x: x[1],
218
- reverse=True,
219
- )
220
- sorted_general_strings = [x[0] for x in sorted_general_strings]
221
- sorted_general_strings = (
222
- ", ".join(sorted_general_strings).replace("(", r"\(").replace(")", r"\)")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
  )
224
 
225
- return sorted_general_strings, rating, character_res, general_res
 
 
 
 
226
 
227
 
228
  def main():
 
 
 
 
 
 
 
 
 
229
  args = parse_args()
230
 
231
- predictor = Predictor()
232
-
233
- dropdown_list = [
234
- SWINV2_MODEL_DSV3_REPO,
235
- CONV_MODEL_DSV3_REPO,
236
- VIT_MODEL_DSV3_REPO,
237
- VIT_LARGE_MODEL_DSV3_REPO,
238
- EVA02_LARGE_MODEL_DSV3_REPO,
239
- # ---
240
- MOAT_MODEL_DSV2_REPO,
241
- SWIN_MODEL_DSV2_REPO,
242
- CONV_MODEL_DSV2_REPO,
243
- CONV2_MODEL_DSV2_REPO,
244
- VIT_MODEL_DSV2_REPO,
245
- # ---
246
- SWINV2_MODEL_IS_DSV1_REPO,
247
- EVA02_LARGE_MODEL_IS_DSV1_REPO,
248
- ]
249
-
250
- with gr.Blocks(title=TITLE) as demo:
251
- with gr.Column():
252
- gr.Markdown(
253
- value=f"<h1 style='text-align: center; margin-bottom: 1rem'>{TITLE}</h1>"
254
- )
255
- gr.Markdown(value=DESCRIPTION)
256
- with gr.Row():
257
- with gr.Column(variant="panel"):
258
- image = gr.Image(type="pil", image_mode="RGBA", label="Input")
259
- model_repo = gr.Dropdown(
260
- dropdown_list,
261
- value=SWINV2_MODEL_DSV3_REPO,
262
- label="Model",
263
- )
264
- with gr.Row():
265
- general_thresh = gr.Slider(
266
- 0,
267
- 1,
268
- step=args.score_slider_step,
269
- value=args.score_general_threshold,
270
- label="General Tags Threshold",
271
- scale=3,
272
- )
273
- general_mcut_enabled = gr.Checkbox(
274
- value=False,
275
- label="Use MCut threshold",
276
- scale=1,
277
- )
278
- with gr.Row():
279
- character_thresh = gr.Slider(
280
- 0,
281
- 1,
282
- step=args.score_slider_step,
283
- value=args.score_character_threshold,
284
- label="Character Tags Threshold",
285
- scale=3,
286
- )
287
- character_mcut_enabled = gr.Checkbox(
288
- value=False,
289
- label="Use MCut threshold",
290
- scale=1,
291
- )
292
- with gr.Row():
293
- clear = gr.ClearButton(
294
- components=[
295
- image,
296
- model_repo,
297
- general_thresh,
298
- general_mcut_enabled,
299
- character_thresh,
300
- character_mcut_enabled,
301
- ],
302
- variant="secondary",
303
- size="lg",
304
- )
305
- submit = gr.Button(value="Submit", variant="primary", size="lg")
306
- with gr.Column(variant="panel"):
307
- sorted_general_strings = gr.Textbox(label="Output (string)")
308
- rating = gr.Label(label="Rating")
309
- character_res = gr.Label(label="Output (characters)")
310
- general_res = gr.Label(label="Output (tags)")
311
- clear.add(
312
- [
313
- sorted_general_strings,
314
- rating,
315
- character_res,
316
- general_res,
317
- ]
318
- )
319
-
320
- submit.click(
321
- predictor.predict,
322
- inputs=[
323
- image,
324
- model_repo,
325
- general_thresh,
326
- general_mcut_enabled,
327
- character_thresh,
328
- character_mcut_enabled,
329
- ],
330
- outputs=[sorted_general_strings, rating, character_res, general_res],
331
- )
332
 
333
- gr.Examples(
334
- [["power.jpg", SWINV2_MODEL_DSV3_REPO, 0.35, False, 0.85, False]],
335
- inputs=[
336
- image,
337
- model_repo,
338
- general_thresh,
339
- general_mcut_enabled,
340
- character_thresh,
341
- character_mcut_enabled,
342
- ],
343
- )
344
 
345
- demo.queue(max_size=10)
346
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
347
 
348
 
349
  if __name__ == "__main__":
 
1
+ from __future__ import annotations
2
+
3
  import argparse
4
+ import functools
5
+ import html
6
  import os
7
 
8
  import gradio as gr
 
10
  import numpy as np
11
  import onnxruntime as rt
12
  import pandas as pd
13
+ import piexif
14
+ import piexif.helper
15
+ import PIL.Image
16
 
17
+ from Utils import dbimutils
 
 
18
 
19
+ TITLE = "WaifuDiffusion v1.4 Tags"
20
+ DESCRIPTION = """
21
+ Demo for:
22
+ - [SmilingWolf/wd-v1-4-moat-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-moat-tagger-v2)
23
+ - [SmilingWolf/wd-v1-4-swinv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2)
24
+ - [SmilingWolf/wd-v1-4-convnext-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnext-tagger-v2)
25
+ - [SmilingWolf/wd-v1-4-convnextv2-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-convnextv2-tagger-v2)
26
+ - [SmilingWolf/wd-v1-4-vit-tagger-v2](https://huggingface.co/SmilingWolf/wd-v1-4-vit-tagger-v2)
27
 
28
+ Includes "ready to copy" prompt and a prompt analyzer.
29
 
30
+ Modified from [NoCrypt/DeepDanbooru_string](https://huggingface.co/spaces/NoCrypt/DeepDanbooru_string)
31
+ Modified from [hysts/DeepDanbooru](https://huggingface.co/spaces/hysts/DeepDanbooru)
 
 
 
 
32
 
33
+ PNG Info code forked from [AUTOMATIC1111/stable-diffusion-webui](https://github.com/AUTOMATIC1111/stable-diffusion-webui)
 
 
 
 
 
34
 
35
+ Example image by [ほし☆☆☆](https://www.pixiv.net/en/users/43565085)
36
+ """
 
37
 
38
+ HF_TOKEN = os.environ["HF_TOKEN"]
39
+ MOAT_MODEL_REPO = "SmilingWolf/wd-v1-4-moat-tagger-v2"
40
+ SWIN_MODEL_REPO = "SmilingWolf/wd-v1-4-swinv2-tagger-v2"
41
+ CONV_MODEL_REPO = "SmilingWolf/wd-v1-4-convnext-tagger-v2"
42
+ CONV2_MODEL_REPO = "SmilingWolf/wd-v1-4-convnextv2-tagger-v2"
43
+ VIT_MODEL_REPO = "SmilingWolf/wd-v1-4-vit-tagger-v2"
44
  MODEL_FILENAME = "model.onnx"
45
  LABEL_FILENAME = "selected_tags.csv"
46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
  def parse_args() -> argparse.Namespace:
49
  parser = argparse.ArgumentParser()
50
  parser.add_argument("--score-slider-step", type=float, default=0.05)
51
  parser.add_argument("--score-general-threshold", type=float, default=0.35)
52
  parser.add_argument("--score-character-threshold", type=float, default=0.85)
53
+ parser.add_argument("--share", action="store_true")
54
  return parser.parse_args()
55
 
56
 
57
+ def load_model(model_repo: str, model_filename: str) -> rt.InferenceSession:
58
+ path = huggingface_hub.hf_hub_download(
59
+ model_repo, model_filename, use_auth_token=HF_TOKEN
 
60
  )
61
+ model = rt.InferenceSession(path)
62
+ return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63
 
 
 
 
 
 
64
 
65
+ def change_model(model_name):
66
+ global loaded_models
67
 
68
+ if model_name == "MOAT":
69
+ model = load_model(MOAT_MODEL_REPO, MODEL_FILENAME)
70
+ elif model_name == "SwinV2":
71
+ model = load_model(SWIN_MODEL_REPO, MODEL_FILENAME)
72
+ elif model_name == "ConvNext":
73
+ model = load_model(CONV_MODEL_REPO, MODEL_FILENAME)
74
+ elif model_name == "ConvNextV2":
75
+ model = load_model(CONV2_MODEL_REPO, MODEL_FILENAME)
76
+ elif model_name == "ViT":
77
+ model = load_model(VIT_MODEL_REPO, MODEL_FILENAME)
78
 
79
+ loaded_models[model_name] = model
80
+ return loaded_models[model_name]
81
 
 
 
82
 
83
+ def load_labels() -> list[str]:
84
+ path = huggingface_hub.hf_hub_download(
85
+ MOAT_MODEL_REPO, LABEL_FILENAME, use_auth_token=HF_TOKEN
86
+ )
87
+ df = pd.read_csv(path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88
 
89
+ tag_names = df["name"].tolist()
90
+ rating_indexes = list(np.where(df["category"] == 9)[0])
91
+ general_indexes = list(np.where(df["category"] == 0)[0])
92
+ character_indexes = list(np.where(df["category"] == 4)[0])
93
+ return tag_names, rating_indexes, general_indexes, character_indexes
94
 
 
 
95
 
96
+ def plaintext_to_html(text):
97
+ text = (
98
+ "<p>" + "<br>\n".join([f"{html.escape(x)}" for x in text.split("\n")]) + "</p>"
99
+ )
100
+ return text
101
+
102
+
103
+ def predict(
104
+ image: PIL.Image.Image,
105
+ model_name: str,
106
+ general_threshold: float,
107
+ character_threshold: float,
108
+ tag_names: list[str],
109
+ rating_indexes: list[np.int64],
110
+ general_indexes: list[np.int64],
111
+ character_indexes: list[np.int64],
112
+ ):
113
+ global loaded_models
114
+
115
+ rawimage = image
116
+
117
+ model = loaded_models[model_name]
118
+ if model is None:
119
+ model = change_model(model_name)
120
+
121
+ _, height, width, _ = model.get_inputs()[0].shape
122
+
123
+ # Alpha to white
124
+ image = image.convert("RGBA")
125
+ new_image = PIL.Image.new("RGBA", image.size, "WHITE")
126
+ new_image.paste(image, mask=image)
127
+ image = new_image.convert("RGB")
128
+ image = np.asarray(image)
129
+
130
+ # PIL RGB to OpenCV BGR
131
+ image = image[:, :, ::-1]
132
+
133
+ image = dbimutils.make_square(image, height)
134
+ image = dbimutils.smart_resize(image, height)
135
+ image = image.astype(np.float32)
136
+ image = np.expand_dims(image, 0)
137
+
138
+ input_name = model.get_inputs()[0].name
139
+ label_name = model.get_outputs()[0].name
140
+ probs = model.run([label_name], {input_name: image})[0]
141
+
142
+ labels = list(zip(tag_names, probs[0].astype(float)))
143
+
144
+ # First 4 labels are actually ratings: pick one with argmax
145
+ ratings_names = [labels[i] for i in rating_indexes]
146
+ rating = dict(ratings_names)
147
+
148
+ # Then we have general tags: pick any where prediction confidence > threshold
149
+ general_names = [labels[i] for i in general_indexes]
150
+ general_res = [x for x in general_names if x[1] > general_threshold]
151
+ general_res = dict(general_res)
152
+
153
+ # Everything else is characters: pick any where prediction confidence > threshold
154
+ character_names = [labels[i] for i in character_indexes]
155
+ character_res = [x for x in character_names if x[1] > character_threshold]
156
+ character_res = dict(character_res)
157
+
158
+ b = dict(sorted(general_res.items(), key=lambda item: item[1], reverse=True))
159
+ a = (
160
+ ", ".join(list(b.keys()))
161
+ .replace("_", " ")
162
+ .replace("(", "\(")
163
+ .replace(")", "\)")
164
+ )
165
+ c = ", ".join(list(b.keys()))
166
+
167
+ items = rawimage.info
168
+ geninfo = ""
169
+
170
+ if "exif" in rawimage.info:
171
+ exif = piexif.load(rawimage.info["exif"])
172
+ exif_comment = (exif or {}).get("Exif", {}).get(piexif.ExifIFD.UserComment, b"")
173
+ try:
174
+ exif_comment = piexif.helper.UserComment.load(exif_comment)
175
+ except ValueError:
176
+ exif_comment = exif_comment.decode("utf8", errors="ignore")
177
+
178
+ items["exif comment"] = exif_comment
179
+ geninfo = exif_comment
180
+
181
+ for field in [
182
+ "jfif",
183
+ "jfif_version",
184
+ "jfif_unit",
185
+ "jfif_density",
186
+ "dpi",
187
+ "exif",
188
+ "loop",
189
+ "background",
190
+ "timestamp",
191
+ "duration",
192
+ ]:
193
+ items.pop(field, None)
194
+
195
+ geninfo = items.get("parameters", geninfo)
196
+
197
+ info = f"""
198
+ <p><h4>PNG Info</h4></p>
199
+ """
200
+ for key, text in items.items():
201
+ info += (
202
+ f"""
203
+ <div>
204
+ <p><b>{plaintext_to_html(str(key))}</b></p>
205
+ <p>{plaintext_to_html(str(text))}</p>
206
+ </div>
207
+ """.strip()
208
+ + "\n"
209
  )
210
 
211
+ if len(info) == 0:
212
+ message = "Nothing found in the image."
213
+ info = f"<div><p>{message}<p></div>"
214
+
215
+ return (a, c, rating, character_res, general_res, info)
216
 
217
 
218
  def main():
219
+ global loaded_models
220
+ loaded_models = {
221
+ "MOAT": None,
222
+ "SwinV2": None,
223
+ "ConvNext": None,
224
+ "ConvNextV2": None,
225
+ "ViT": None,
226
+ }
227
+
228
  args = parse_args()
229
 
230
+ change_model("MOAT")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231
 
232
+ tag_names, rating_indexes, general_indexes, character_indexes = load_labels()
 
 
 
 
 
 
 
 
 
 
233
 
234
+ func = functools.partial(
235
+ predict,
236
+ tag_names=tag_names,
237
+ rating_indexes=rating_indexes,
238
+ general_indexes=general_indexes,
239
+ character_indexes=character_indexes,
240
+ )
241
+
242
+ gr.Interface(
243
+ fn=func,
244
+ inputs=[
245
+ gr.Image(type="pil", label="Input"),
246
+ gr.Radio(
247
+ ["MOAT", "SwinV2", "ConvNext", "ConvNextV2", "ViT"],
248
+ value="MOAT",
249
+ label="Model",
250
+ ),
251
+ gr.Slider(
252
+ 0,
253
+ 1,
254
+ step=args.score_slider_step,
255
+ value=args.score_general_threshold,
256
+ label="General Tags Threshold",
257
+ ),
258
+ gr.Slider(
259
+ 0,
260
+ 1,
261
+ step=args.score_slider_step,
262
+ value=args.score_character_threshold,
263
+ label="Character Tags Threshold",
264
+ ),
265
+ ],
266
+ outputs=[
267
+ gr.Textbox(label="Output (string)"),
268
+ gr.Textbox(label="Output (raw string)"),
269
+ gr.Label(label="Rating"),
270
+ gr.Label(label="Output (characters)"),
271
+ gr.Label(label="Output (tags)"),
272
+ gr.HTML(),
273
+ ],
274
+ examples=[["power.jpg", "MOAT", 0.35, 0.85]],
275
+ title=TITLE,
276
+ description=DESCRIPTION,
277
+ allow_flagging="never",
278
+ ).launch(
279
+ enable_queue=True,
280
+ share=args.share,
281
+ )
282
 
283
 
284
  if __name__ == "__main__":
requirements.txt CHANGED
@@ -1,3 +1,5 @@
1
  pillow>=9.0.0
 
2
  onnxruntime>=1.12.0
 
3
  huggingface-hub
 
1
  pillow>=9.0.0
2
+ piexif>=1.1.3
3
  onnxruntime>=1.12.0
4
+ opencv-python
5
  huggingface-hub