File size: 2,102 Bytes
997196d
 
 
68005cb
a70b849
997196d
 
a70b849
997196d
 
a70b849
 
 
 
 
997196d
 
 
 
87476e8
9d0fe26
997196d
 
9d0fe26
 
997196d
9d0fe26
5e4b040
 
 
 
9d0fe26
 
5e4b040
997196d
5e4b040
997196d
 
5e4b040
 
 
 
 
 
6db7691
5e4b040
 
 
997196d
5e4b040
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

import streamlit as st
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import os

# Check and retrieve the API token from environment variables
api_token = os.getenv('hugging_face_api_token')
if not api_token:
    st.error("Hugging Face API token not found. Please set the HUGGING_FACE_API_TOKEN environment variable.")
    st.stop()

# Configure the use of the token for Hugging Face operations
from huggingface_hub import HfFolder
HfFolder.save_token(api_token)

# Initialize tokenizer and model with the correct model ID
model_id = "mistral-community/Mistral-8x22B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id)

# Streamlit app title and description
st.title("Text Generation App")
st.write("This app generates text based on the input prompt using the Mistral-8x22B model.")

# Text input for user prompt
prompt = st.text_input("Enter your prompt:", "Hello my name is")

# User controls for output length and creativity
max_length = st.slider("Select the maximum output length:", min_value=50, max_value=500, value=100)
temperature = st.slider("Adjust the creativity level (temperature):", min_value=0.1, max_value=1.0, value=0.7)

# Generate button to trigger text generation
if st.button("Generate Text"):
    with st.spinner('Generating text...'):
        inputs = tokenizer(prompt, return_tensors="pt")
        try:
            outputs = model.generate(**inputs, max_length=max_length, temperature=temperature)
            generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        except Exception as e:
            st.error(f"Error generating text: {str(e)}")
        else:
            st.success('Text generation complete!')
            st.markdown("### Generated Text:")
            st.markdown(generated_text)

# About section
with st.expander("About"):
    st.write("""
        This text generation app utilizes the powerful Mistral-8x22B model from the Mistral community on Hugging Face. 
        Adjust the sliders to change the length and creativity of the output.
    """)