Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,26 @@
|
|
1 |
-
import streamlit as st
|
2 |
import os
|
3 |
-
from transformers import pipeline
|
4 |
|
5 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
hugging_face_api_token = os.getenv('hugging_face_api_token')
|
8 |
|
9 |
-
# Load the text generation pipeline
|
10 |
-
generator = pipeline("text-generation", model="google/gemma-7b", tokenizer="google/gemma-7b")
|
11 |
|
12 |
|
13 |
-
import streamlit as st
|
14 |
-
from transformers import pipeline
|
15 |
|
16 |
# Streamlit app title and description
|
17 |
st.title("Gemma Text Generation App")
|
|
|
|
|
1 |
import os
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForTextGeneration
|
3 |
|
4 |
+
# Retrieve the API token from environment variables
|
5 |
+
api_token = os.getenv('hugging_face_api_token')
|
6 |
+
|
7 |
+
if not api_token:
|
8 |
+
raise ValueError("Hugging Face API token not found. Please set the HUGGING_FACE_API_TOKEN environment variable.")
|
9 |
+
|
10 |
+
# Configure the use of the token for Hugging Face operations
|
11 |
+
from huggingface_hub import HfFolder
|
12 |
+
HfFolder.save_token(api_token)
|
13 |
+
|
14 |
+
# Now you can securely use the model
|
15 |
+
model_name = "google/gemma-7b"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModelForTextGeneration.from_pretrained(model_name)
|
18 |
+
|
19 |
+
generator = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
20 |
|
|
|
21 |
|
|
|
|
|
22 |
|
23 |
|
|
|
|
|
24 |
|
25 |
# Streamlit app title and description
|
26 |
st.title("Gemma Text Generation App")
|