Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,758 Bytes
8f570a9 b38c358 e128936 0d89801 7e66050 b38c358 0d89801 b38c358 0d89801 031c42b 83cae6c 0d89801 e128936 72d2b99 b38c358 f0e8d1f 0d89801 8f570a9 72d2b99 8f570a9 bca1af7 8f570a9 b38c358 e128936 b38c358 e128936 b38c358 0d89801 722b968 0d89801 7e66050 0d89801 722b968 0d89801 b38c358 722b968 0d89801 8f570a9 b38c358 867296e e128936 b38c358 867296e e128936 72d2b99 b38c358 0d89801 3e075bb e128936 805962c b38c358 805962c b38c358 805962c e128936 b38c358 e128936 72d2b99 e128936 72d2b99 e128936 72d2b99 e128936 72d2b99 e128936 0d89801 2b61647 722b968 7ea5176 722b968 0d89801 b38c358 e128936 0d89801 2b61647 0d89801 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
from typing import Tuple
import supervision as sv
import random
import numpy as np
import gradio as gr
import spaces
import torch
from PIL import Image, ImageFilter
from diffusers import FluxInpaintPipeline
from utils.florence import load_florence_model, run_florence_inference, \
FLORENCE_OPEN_VOCABULARY_DETECTION_TASK
from utils.sam import load_sam_image_model, run_sam_inference
MARKDOWN = """
# FLUX.1 Inpainting 🔥
Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for
creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos)
for taking it to the next level by enabling inpainting with the FLUX.
"""
MAX_SEED = np.iinfo(np.int32).max
IMAGE_SIZE = 1024
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.autocast(device_type="cuda", dtype=torch.bfloat16).__enter__()
if torch.cuda.get_device_properties(0).major >= 8:
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
FLORENCE_MODEL, FLORENCE_PROCESSOR = load_florence_model(device=DEVICE)
SAM_IMAGE_MODEL = load_sam_image_model(device=DEVICE)
FLUX_INPAINTING_PIPELINE = FluxInpaintPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
def resize_image_dimensions(
original_resolution_wh: Tuple[int, int],
maximum_dimension: int = IMAGE_SIZE
) -> Tuple[int, int]:
width, height = original_resolution_wh
if width > height:
scaling_factor = maximum_dimension / width
else:
scaling_factor = maximum_dimension / height
new_width = int(width * scaling_factor)
new_height = int(height * scaling_factor)
new_width = new_width - (new_width % 32)
new_height = new_height - (new_height % 32)
return new_width, new_height
@spaces.GPU(duration=150)
@torch.inference_mode()
@torch.autocast(device_type="cuda", dtype=torch.bfloat16)
def process(
input_image_editor: dict,
inpainting_prompt_text: str,
segmentation_prompt_text: str,
seed_slicer: int,
randomize_seed_checkbox: bool,
strength_slider: float,
num_inference_steps_slider: int,
progress=gr.Progress(track_tqdm=True)
):
if not inpainting_prompt_text:
gr.Info("Please enter a text prompt.")
return None, None
image = input_image_editor['background']
mask = input_image_editor['layers'][0]
if not image:
gr.Info("Please upload an image.")
return None, None
if not mask and not segmentation_prompt_text:
gr.Info("Please draw a mask or enter a segmentation prompt.")
return None, None
if mask and segmentation_prompt_text:
gr.Info("Both mask and segmentation prompt are provided. Please provide only "
"one.")
return None, None
width, height = resize_image_dimensions(original_resolution_wh=image.size)
image = image.resize((width, height), Image.LANCZOS)
if segmentation_prompt_text:
_, result = run_florence_inference(
model=FLORENCE_MODEL,
processor=FLORENCE_PROCESSOR,
device=DEVICE,
image=image,
task=FLORENCE_OPEN_VOCABULARY_DETECTION_TASK,
text=segmentation_prompt_text
)
detections = sv.Detections.from_lmm(
lmm=sv.LMM.FLORENCE_2,
result=result,
resolution_wh=image.size
)
detections = run_sam_inference(SAM_IMAGE_MODEL, image, detections)
if len(detections) == 0:
gr.Info(f"{segmentation_prompt_text} prompt did not return any detections.")
return None, None
mask = Image.fromarray((detections.mask[0].astype(np.uint8)) * 255)
mask = mask.resize((width, height), Image.LANCZOS)
mask = mask.filter(ImageFilter.GaussianBlur(radius=10))
if randomize_seed_checkbox:
seed_slicer = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed_slicer)
result = FLUX_INPAINTING_PIPELINE(
prompt=inpainting_prompt_text,
image=image,
mask_image=mask,
width=width,
height=height,
strength=strength_slider,
generator=generator,
num_inference_steps=num_inference_steps_slider
).images[0]
print('INFERENCE DONE')
return result, mask
with gr.Blocks() as demo:
gr.Markdown(MARKDOWN)
with gr.Row():
with gr.Column():
input_image_editor_component = gr.ImageEditor(
label='Image',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
with gr.Row():
inpainting_prompt_text_component = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter inpainting prompt",
container=False,
)
submit_button_component = gr.Button(
value='Submit', variant='primary', scale=0)
with gr.Accordion("Advanced Settings", open=False):
segmentation_prompt_text_component = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter segmentation prompt",
container=False,
)
seed_slicer_component = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed_checkbox_component = gr.Checkbox(
label="Randomize seed", value=True)
with gr.Row():
strength_slider_component = gr.Slider(
label="Strength",
info="Indicates extent to transform the reference `image`. "
"Must be between 0 and 1. `image` is used as a starting "
"point and more noise is added the higher the `strength`.",
minimum=0,
maximum=1,
step=0.01,
value=0.85,
)
num_inference_steps_slider_component = gr.Slider(
label="Number of inference steps",
info="The number of denoising steps. More denoising steps "
"usually lead to a higher quality image at the",
minimum=1,
maximum=50,
step=1,
value=20,
)
with gr.Column():
output_image_component = gr.Image(
type='pil', image_mode='RGB', label='Generated image', format="png")
with gr.Accordion("Debug", open=False):
output_mask_component = gr.Image(
type='pil', image_mode='RGB', label='Input mask', format="png")
submit_button_component.click(
fn=process,
inputs=[
input_image_editor_component,
inpainting_prompt_text_component,
segmentation_prompt_text_component,
seed_slicer_component,
randomize_seed_checkbox_component,
strength_slider_component,
num_inference_steps_slider_component
],
outputs=[
output_image_component,
output_mask_component
]
)
demo.launch(debug=False, show_error=True)
|