Spaces:
Running
on
Zero
Running
on
Zero
sync
Browse files
app.py
CHANGED
@@ -17,7 +17,7 @@ for taking it to the next level by enabling inpainting with the FLUX.
|
|
17 |
"""
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
-
|
21 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
|
23 |
pipe = FluxInpaintPipeline.from_pretrained(
|
@@ -26,10 +26,15 @@ pipe = FluxInpaintPipeline.from_pretrained(
|
|
26 |
|
27 |
def resize_image_dimensions(
|
28 |
original_resolution_wh: Tuple[int, int],
|
29 |
-
maximum_dimension: int =
|
30 |
) -> Tuple[int, int]:
|
31 |
width, height = original_resolution_wh
|
32 |
|
|
|
|
|
|
|
|
|
|
|
33 |
if width > height:
|
34 |
scaling_factor = maximum_dimension / width
|
35 |
else:
|
@@ -41,13 +46,10 @@ def resize_image_dimensions(
|
|
41 |
new_width = new_width - (new_width % 32)
|
42 |
new_height = new_height - (new_height % 32)
|
43 |
|
44 |
-
new_width = min(maximum_dimension, new_width)
|
45 |
-
new_height = min(maximum_dimension, new_height)
|
46 |
-
|
47 |
return new_width, new_height
|
48 |
|
49 |
|
50 |
-
@spaces.GPU()
|
51 |
def process(
|
52 |
input_image_editor: dict,
|
53 |
input_text: str,
|
@@ -79,7 +81,7 @@ def process(
|
|
79 |
if randomize_seed_checkbox:
|
80 |
seed_slicer = random.randint(0, MAX_SEED)
|
81 |
generator = torch.Generator().manual_seed(seed_slicer)
|
82 |
-
|
83 |
prompt=input_text,
|
84 |
image=resized_image,
|
85 |
mask_image=resized_mask,
|
@@ -88,7 +90,9 @@ def process(
|
|
88 |
strength=strength_slider,
|
89 |
generator=generator,
|
90 |
num_inference_steps=num_inference_steps_slider
|
91 |
-
).images[0]
|
|
|
|
|
92 |
|
93 |
|
94 |
with gr.Blocks() as demo:
|
@@ -120,7 +124,7 @@ with gr.Blocks() as demo:
|
|
120 |
minimum=0,
|
121 |
maximum=MAX_SEED,
|
122 |
step=1,
|
123 |
-
value=
|
124 |
)
|
125 |
|
126 |
randomize_seed_checkbox_component = gr.Checkbox(
|
@@ -129,14 +133,19 @@ with gr.Blocks() as demo:
|
|
129 |
with gr.Row():
|
130 |
strength_slider_component = gr.Slider(
|
131 |
label="Strength",
|
|
|
|
|
|
|
132 |
minimum=0,
|
133 |
maximum=1,
|
134 |
step=0.01,
|
135 |
-
value=0.
|
136 |
)
|
137 |
|
138 |
num_inference_steps_slider_component = gr.Slider(
|
139 |
label="Number of inference steps",
|
|
|
|
|
140 |
minimum=1,
|
141 |
maximum=50,
|
142 |
step=1,
|
|
|
17 |
"""
|
18 |
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
+
IMAGE_SIZE = 1024
|
21 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
22 |
|
23 |
pipe = FluxInpaintPipeline.from_pretrained(
|
|
|
26 |
|
27 |
def resize_image_dimensions(
|
28 |
original_resolution_wh: Tuple[int, int],
|
29 |
+
maximum_dimension: int = IMAGE_SIZE
|
30 |
) -> Tuple[int, int]:
|
31 |
width, height = original_resolution_wh
|
32 |
|
33 |
+
# if width <= maximum_dimension and height <= maximum_dimension:
|
34 |
+
# width = width - (width % 32)
|
35 |
+
# height = height - (height % 32)
|
36 |
+
# return width, height
|
37 |
+
|
38 |
if width > height:
|
39 |
scaling_factor = maximum_dimension / width
|
40 |
else:
|
|
|
46 |
new_width = new_width - (new_width % 32)
|
47 |
new_height = new_height - (new_height % 32)
|
48 |
|
|
|
|
|
|
|
49 |
return new_width, new_height
|
50 |
|
51 |
|
52 |
+
@spaces.GPU(duration=100)
|
53 |
def process(
|
54 |
input_image_editor: dict,
|
55 |
input_text: str,
|
|
|
81 |
if randomize_seed_checkbox:
|
82 |
seed_slicer = random.randint(0, MAX_SEED)
|
83 |
generator = torch.Generator().manual_seed(seed_slicer)
|
84 |
+
result = pipe(
|
85 |
prompt=input_text,
|
86 |
image=resized_image,
|
87 |
mask_image=resized_mask,
|
|
|
90 |
strength=strength_slider,
|
91 |
generator=generator,
|
92 |
num_inference_steps=num_inference_steps_slider
|
93 |
+
).images[0]
|
94 |
+
print('INFERENCE DONE')
|
95 |
+
return result, resized_mask
|
96 |
|
97 |
|
98 |
with gr.Blocks() as demo:
|
|
|
124 |
minimum=0,
|
125 |
maximum=MAX_SEED,
|
126 |
step=1,
|
127 |
+
value=42,
|
128 |
)
|
129 |
|
130 |
randomize_seed_checkbox_component = gr.Checkbox(
|
|
|
133 |
with gr.Row():
|
134 |
strength_slider_component = gr.Slider(
|
135 |
label="Strength",
|
136 |
+
info="Indicates extent to transform the reference `image`. "
|
137 |
+
"Must be between 0 and 1. `image` is used as a starting "
|
138 |
+
"point and more noise is added the higher the `strength`.",
|
139 |
minimum=0,
|
140 |
maximum=1,
|
141 |
step=0.01,
|
142 |
+
value=0.85,
|
143 |
)
|
144 |
|
145 |
num_inference_steps_slider_component = gr.Slider(
|
146 |
label="Number of inference steps",
|
147 |
+
info="The number of denoising steps. More denoising steps "
|
148 |
+
"usually lead to a higher quality image at the",
|
149 |
minimum=1,
|
150 |
maximum=50,
|
151 |
step=1,
|