|
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
import gradio as gr |
|
import numpy as np |
|
|
|
|
|
|
|
|
|
class BrainEyeCNN(nn.Module): |
|
def __init__(self): |
|
super(BrainEyeCNN, self).__init__() |
|
self.conv1 = nn.Conv1d(in_channels=1, out_channels=8, kernel_size=3, stride=1, padding=1) |
|
self.relu = nn.ReLU() |
|
self.fc1 = nn.Linear(8 * 5, 5) |
|
|
|
def forward(self, x): |
|
x = x.unsqueeze(1) |
|
x = self.relu(self.conv1(x)) |
|
x = x.view(x.size(0), -1) |
|
x = self.fc1(x) |
|
return x |
|
|
|
|
|
model = BrainEyeCNN() |
|
|
|
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
model.fc1.weight.fill_(0.5) |
|
model.fc1.bias.fill_(0.1) |
|
|
|
|
|
|
|
|
|
def quantum_predict(data): |
|
""" |
|
Quantum-Inspired Prediction: Uses parallel thought processing |
|
""" |
|
q_data = torch.tensor([data], dtype=torch.float32) |
|
ai_output = model(q_data) |
|
prediction = torch.argmax(ai_output, dim=1).item() |
|
|
|
|
|
quantum_states = ["Relaxed", "Focused", "Anxiety", "Meditative", "Decision-Making"] |
|
return quantum_states[prediction] |
|
|
|
|
|
|
|
|
|
def predict_live(breathing, heartbeat, eye_focus, memory, cognition): |
|
input_data = [float(breathing), float(heartbeat), float(eye_focus), float(memory), float(cognition)] |
|
prediction = quantum_predict(input_data) |
|
return f"Predicted Mental State: {prediction}" |
|
|
|
|
|
interface = gr.Interface( |
|
fn=predict_live, |
|
inputs=[ |
|
gr.Textbox(label="Breathing Rate (0-1)"), |
|
gr.Textbox(label="Heart Rate (bpm)"), |
|
gr.Textbox(label="Eye Focus Level (0-1)"), |
|
gr.Textbox(label="Memory Recall Strength (0-1)"), |
|
gr.Textbox(label="Cognitive Load (0-1)") |
|
], |
|
outputs="text" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
interface.launch() |
|
|