import torch import torch.nn as nn import torch.optim as optim import gradio as gr import numpy as np # ========================= # AI Model Definition (CNN for Brain-Eye Sync) # ========================= class BrainEyeCNN(nn.Module): def __init__(self): super(BrainEyeCNN, self).__init__() self.conv1 = nn.Conv1d(in_channels=1, out_channels=8, kernel_size=3, stride=1, padding=1) self.relu = nn.ReLU() self.fc1 = nn.Linear(8 * 5, 5) # Fully connected layer def forward(self, x): x = x.unsqueeze(1) # Add channel dimension x = self.relu(self.conv1(x)) x = x.view(x.size(0), -1) # Flatten x = self.fc1(x) return x # Initialize Model model = BrainEyeCNN() # ========================= # Pre-trained Simulated Weights # ========================= # Normally, you'd train & save, but here we load fixed weights for Hugging Face with torch.no_grad(): model.fc1.weight.fill_(0.5) model.fc1.bias.fill_(0.1) # ========================= # Quantum-Inspired Prediction # ========================= def quantum_predict(data): """ Quantum-Inspired Prediction: Uses parallel thought processing """ q_data = torch.tensor([data], dtype=torch.float32) ai_output = model(q_data) prediction = torch.argmax(ai_output, dim=1).item() # Quantum Parallelism Simulation quantum_states = ["Relaxed", "Focused", "Anxiety", "Meditative", "Decision-Making"] return quantum_states[prediction] # ========================= # Gradio UI for Hugging Face # ========================= def predict_live(breathing, heartbeat, eye_focus, memory, cognition): input_data = [float(breathing), float(heartbeat), float(eye_focus), float(memory), float(cognition)] prediction = quantum_predict(input_data) return f"Predicted Mental State: {prediction}" # Deploy on Hugging Face interface = gr.Interface( fn=predict_live, inputs=[ gr.Textbox(label="Breathing Rate (0-1)"), gr.Textbox(label="Heart Rate (bpm)"), gr.Textbox(label="Eye Focus Level (0-1)"), gr.Textbox(label="Memory Recall Strength (0-1)"), gr.Textbox(label="Cognitive Load (0-1)") ], outputs="text" ) # Run the Gradio app if __name__ == "__main__": interface.launch()