Spaces:
Runtime error
Runtime error
import os | |
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu') | |
import gradio as gr | |
import numpy as np | |
from transformers import AutoModelForTokenClassification | |
from datasets.features import ClassLabel | |
from transformers import AutoProcessor | |
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D | |
import torch | |
from datasets import load_metric | |
from transformers import LayoutLMv3ForTokenClassification | |
from transformers.data.data_collator import default_data_collator | |
from transformers import AutoModelForTokenClassification | |
from datasets import load_dataset | |
from PIL import Image, ImageDraw, ImageFont | |
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True) | |
#model = AutoModelForTokenClassification.from_pretrained("Theivaprakasham/layoutlmv3-finetuned-invoice") | |
model = AutoModelForTokenClassification.from_pretrained("SickBoy/layoutlm_documents") | |
# load image example | |
dataset = load_dataset("SickBoy/layout_documents", split="train") | |
example = dataset[0] | |
image1 = example["image"] | |
words = example["tokens"] | |
boxes = example["bboxes"] | |
labels = example["ner_tags"] | |
#Image.open(dataset[2]["image_path"]).convert("RGB").save("example1.png") | |
#Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png") | |
#Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png") | |
# define id2label, label2color | |
#labels = dataset.features['ner_tags'].feature.names | |
labels = ['O', 'HEADER', 'SUBHEADER', 'TEXTO', 'NUMERAL', 'RESUMEN'] | |
#id2label = {v: k for v, k in enumerate(labels)} | |
id2label = {0: 'O', 1: 'HEADER', 2: 'SUBHEADER', 3: 'TEXTO', 4: 'NUMERAL', 5: 'RESUMEN'} | |
label2color = {'O': 'violet', | |
'HEADER': 'orange', | |
'SUBHEADER': 'blue', | |
'TEXTO': 'green', | |
'NUMERAL': 'yellow', | |
'RESUMEN': 'black',} | |
#label2color = { | |
# "B-ABN": 'blue', | |
# "B-BILLER": 'blue', | |
# "B-BILLER_ADDRESS": 'green', | |
# "B-BILLER_POST_CODE": 'orange', | |
# "B-DUE_DATE": "blue", | |
# "B-GST": 'green', | |
# "B-INVOICE_DATE": 'violet', | |
# "B-INVOICE_NUMBER": 'orange', | |
# "B-SUBTOTAL": 'green', | |
# "B-TOTAL": 'blue', | |
# "I-BILLER_ADDRESS": 'blue', | |
# "O": 'orange' | |
# } | |
def unnormalize_box(bbox, width, height): | |
return [ | |
width * (bbox[0] / 1000), | |
height * (bbox[1] / 1000), | |
width * (bbox[2] / 1000), | |
height * (bbox[3] / 1000), | |
] | |
def iob_to_label(label): | |
return label | |
def process_image(image): | |
print(type(image)) | |
width, height = image.size | |
# encode | |
#encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt") | |
encoding = processor(image1, words, boxes=boxes, word_labels=word_labels, return_tensors="pt") | |
#offset_mapping = encoding.pop('offset_mapping') | |
# forward pass | |
outputs = model(**encoding) | |
# get predictions | |
predictions = outputs.logits.argmax(-1).squeeze().tolist() | |
token_boxes = encoding.bbox.squeeze().tolist() | |
# only keep non-subword predictions | |
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0 | |
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]] | |
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]] | |
# draw predictions over the image | |
draw = ImageDraw.Draw(image) | |
font = ImageFont.load_default() | |
for prediction, box in zip(true_predictions, true_boxes): | |
predicted_label = iob_to_label(prediction) | |
draw.rectangle(box, outline=label2color[predicted_label]) | |
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font) | |
return image | |
title = "Invoice Information extraction using LayoutLMv3 model" | |
description = "Invoice Information Extraction - We use Microsoft's LayoutLMv3 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds." | |
article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>" | |
examples =[['example1.png'],['example2.png'],['example3.png']] | |
css = """.output_image, .input_image {height: 600px !important}""" | |
iface = gr.Interface(fn=process_image, | |
inputs=gr.inputs.Image(type="pil"), | |
outputs=gr.outputs.Image(type="pil", label="annotated image"), | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
css=css, | |
analytics_enabled = True, enable_queue=True) | |
iface.launch(inline=False, share=False, debug=False) |