Spaces:
Runtime error
Runtime error
File size: 5,089 Bytes
b7b1968 bd490f0 b7b1968 c212b2f 16644be b7b1968 86eee17 b7b1968 c212b2f b7b1968 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import os
os.system('pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cpu')
import gradio as gr
import numpy as np
from transformers import AutoModelForTokenClassification
from datasets.features import ClassLabel
from transformers import AutoProcessor
from datasets import Features, Sequence, ClassLabel, Value, Array2D, Array3D
import torch
from datasets import load_metric
from transformers import LayoutLMv3ForTokenClassification
from transformers.data.data_collator import default_data_collator
from transformers import AutoModelForTokenClassification
from datasets import load_dataset
from PIL import Image, ImageDraw, ImageFont
processor = AutoProcessor.from_pretrained("microsoft/layoutlmv3-base", apply_ocr=True)
#model = AutoModelForTokenClassification.from_pretrained("Theivaprakasham/layoutlmv3-finetuned-invoice")
model = AutoModelForTokenClassification.from_pretrained("SickBoy/layoutlm_documents")
# load image example
dataset = load_dataset("SickBoy/layout_documents", split="train")
example = dataset[0]
image1 = example["image"]
words = example["tokens"]
boxes = example["bboxes"]
labels = example["ner_tags"]
#Image.open(dataset[2]["image_path"]).convert("RGB").save("example1.png")
#Image.open(dataset[1]["image_path"]).convert("RGB").save("example2.png")
#Image.open(dataset[0]["image_path"]).convert("RGB").save("example3.png")
# define id2label, label2color
#labels = dataset.features['ner_tags'].feature.names
labels = ['O', 'HEADER', 'SUBHEADER', 'TEXTO', 'NUMERAL', 'RESUMEN']
#id2label = {v: k for v, k in enumerate(labels)}
id2label = {0: 'O', 1: 'HEADER', 2: 'SUBHEADER', 3: 'TEXTO', 4: 'NUMERAL', 5: 'RESUMEN'}
label2color = {'O': 'violet',
'HEADER': 'orange',
'SUBHEADER': 'blue',
'TEXTO': 'green',
'NUMERAL': 'yellow',
'RESUMEN': 'black',}
#label2color = {
# "B-ABN": 'blue',
# "B-BILLER": 'blue',
# "B-BILLER_ADDRESS": 'green',
# "B-BILLER_POST_CODE": 'orange',
# "B-DUE_DATE": "blue",
# "B-GST": 'green',
# "B-INVOICE_DATE": 'violet',
# "B-INVOICE_NUMBER": 'orange',
# "B-SUBTOTAL": 'green',
# "B-TOTAL": 'blue',
# "I-BILLER_ADDRESS": 'blue',
# "O": 'orange'
# }
def unnormalize_box(bbox, width, height):
return [
width * (bbox[0] / 1000),
height * (bbox[1] / 1000),
width * (bbox[2] / 1000),
height * (bbox[3] / 1000),
]
def iob_to_label(label):
return label
def process_image(image):
print(type(image))
width, height = image.size
# encode
#encoding = processor(image, truncation=True, return_offsets_mapping=True, return_tensors="pt")
encoding = processor(image1, words, boxes=boxes, word_labels=word_labels, return_tensors="pt")
#offset_mapping = encoding.pop('offset_mapping')
# forward pass
outputs = model(**encoding)
# get predictions
predictions = outputs.logits.argmax(-1).squeeze().tolist()
token_boxes = encoding.bbox.squeeze().tolist()
# only keep non-subword predictions
is_subword = np.array(offset_mapping.squeeze().tolist())[:,0] != 0
true_predictions = [id2label[pred] for idx, pred in enumerate(predictions) if not is_subword[idx]]
true_boxes = [unnormalize_box(box, width, height) for idx, box in enumerate(token_boxes) if not is_subword[idx]]
# draw predictions over the image
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
for prediction, box in zip(true_predictions, true_boxes):
predicted_label = iob_to_label(prediction)
draw.rectangle(box, outline=label2color[predicted_label])
draw.text((box[0]+10, box[1]-10), text=predicted_label, fill=label2color[predicted_label], font=font)
return image
title = "Invoice Information extraction using LayoutLMv3 model"
description = "Invoice Information Extraction - We use Microsoft's LayoutLMv3 trained on Invoice Dataset to predict the Biller Name, Biller Address, Biller post_code, Due_date, GST, Invoice_date, Invoice_number, Subtotal and Total. To use it, simply upload an image or use the example image below. Results will show up in a few seconds."
article="<b>References</b><br>[1] Y. Xu et al., “LayoutLMv3: Pre-training for Document AI with Unified Text and Image Masking.” 2022. <a href='https://arxiv.org/abs/2204.08387'>Paper Link</a><br>[2] <a href='https://github.com/NielsRogge/Transformers-Tutorials/tree/master/LayoutLMv3'>LayoutLMv3 training and inference</a>"
examples =[['example1.png'],['example2.png'],['example3.png']]
css = """.output_image, .input_image {height: 600px !important}"""
iface = gr.Interface(fn=process_image,
inputs=gr.inputs.Image(type="pil"),
outputs=gr.outputs.Image(type="pil", label="annotated image"),
title=title,
description=description,
article=article,
examples=examples,
css=css,
analytics_enabled = True, enable_queue=True)
iface.launch(inline=False, share=False, debug=False) |