File size: 1,253 Bytes
10f176f 4b31fb8 1330102 b6cb8b5 10f176f 4b31fb8 b6cb8b5 10f176f 35d43f7 10f176f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
from predict import run_prediction
from io import StringIO
import json
import gradio as gr
import spacy
from spacy import displacy
import torch
import nltk
from score_fincat import score_fincat
from sus_fls import get_sustainability,fls
from Cuad_others import quad,summarize_text,fin_ner
nltk.download('punkt')
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
#CUAD STARTS
def load_questions():
questions = []
with open('questions.txt') as f:
questions = f.readlines()
return questions
questions = load_questions()
def mainFun(query,file):
answer,answer_p=quad(query,file.name)
return answer_p,summarize_text(answer),fin_ner(answer),score_fincat(answer),get_sustainability(answer),fls(answer)
iface = gr.Interface(fn=mainFun, inputs=[gr.Dropdown(choices=questions,label='SEARCH QUERY'),gr.inputs.File(label='TXT FILE')], title="CONBERT",description="CONTRACT REVIEW TOOL",article='Article', outputs=[gr.outputs.Textbox(label='Answer'),gr.outputs.Textbox(label='Summary'),gr.HighlightedText(label='NER'),gr.HighlightedText(label='CLAIM'),gr.HighlightedText(label='SUSTAINABILITY'),gr.HighlightedText(label='FLS')], allow_flagging="never")
iface.launch() |