Update app.py
Browse files
app.py
CHANGED
@@ -13,8 +13,9 @@ import pandas as pd
|
|
13 |
import en_core_web_sm
|
14 |
from fincat_utils import extract_context_words
|
15 |
from fincat_utils import bert_embedding_extract
|
|
|
16 |
import pickle
|
17 |
-
lr_clf = pickle.load(open("lr_clf_FiNCAT.pickle",'rb'))
|
18 |
|
19 |
nlp = en_core_web_sm.load()
|
20 |
nltk.download('punkt')
|
@@ -41,35 +42,7 @@ def get_sustainability(text):
|
|
41 |
#SUSTAINABILITY ENDS
|
42 |
|
43 |
#CLAIM STARTS
|
44 |
-
|
45 |
-
li = []
|
46 |
-
highlight = []
|
47 |
-
txt = " " + txt + " "
|
48 |
-
k = ''
|
49 |
-
for word in txt.split():
|
50 |
-
if any(char.isdigit() for char in word):
|
51 |
-
if word[-1] in ['.', ',', ';', ":", "-", "!", "?", ")", '"', "'"]:
|
52 |
-
k = word[-1]
|
53 |
-
word = word[:-1]
|
54 |
-
st = txt.find(" " + word + k + " ")+1
|
55 |
-
k = ''
|
56 |
-
ed = st + len(word)
|
57 |
-
x = {'paragraph' : txt, 'offset_start':st, 'offset_end':ed}
|
58 |
-
context_text = extract_context_words(x)
|
59 |
-
features = bert_embedding_extract(context_text, word)
|
60 |
-
if(features[0]=='None'):
|
61 |
-
highlight.append(('None', ' '))
|
62 |
-
return highlight
|
63 |
-
prediction = lr_clf.predict(features.reshape(1, 768))
|
64 |
-
prediction_probability = '{:.4f}'.format(round(lr_clf.predict_proba(features.reshape(1, 768))[:,1][0], 4))
|
65 |
-
highlight.append((word, ' In-claim' if prediction==1 else 'Out-of-Claim'))
|
66 |
-
# li.append([word,' In-claim' if prediction==1 else 'Out-of-Claim', prediction_probability])
|
67 |
-
else:
|
68 |
-
highlight.append((word, ' '))
|
69 |
-
#headers = ['numeral', 'prediction', 'probability']
|
70 |
-
#dff = pd.DataFrame(li)
|
71 |
-
# dff.columns = headers
|
72 |
-
return highlight
|
73 |
|
74 |
|
75 |
##Summarization
|
@@ -123,6 +96,9 @@ def load_questions_short():
|
|
123 |
return questions_short
|
124 |
questions = load_questions()
|
125 |
questions_short = load_questions_short()
|
|
|
|
|
|
|
126 |
def quad(query,file):
|
127 |
with open(file.name) as f:
|
128 |
paragraph = f.read()
|
@@ -132,6 +108,7 @@ def quad(query,file):
|
|
132 |
print('getting predictions')
|
133 |
predictions = run_prediction([query], paragraph, 'marshmellow77/roberta-base-cuad',n_best_size=5)
|
134 |
answer = ""
|
|
|
135 |
if predictions['0'] == "":
|
136 |
answer = 'No answer found in document'
|
137 |
else:
|
@@ -140,23 +117,11 @@ def quad(query,file):
|
|
140 |
for i in range(1):
|
141 |
raw_answer=data['0'][i]['text']
|
142 |
answer += f"{data['0'][i]['text']} -- \n"
|
143 |
-
answer
|
144 |
-
|
145 |
-
#resp = summarizer(answer)
|
146 |
-
#stext = resp[0]['summary_text']
|
147 |
-
|
148 |
-
# highlight,dff=score_fincat(answer)
|
149 |
-
return answer,summarize_text(answer),fin_ner(answer),score_fincat(answer),get_sustainability(answer),fls(answer)
|
150 |
|
151 |
|
152 |
-
|
153 |
-
#b6.click(get_sustainability, inputs = text, outputs = gr.HighlightedText())
|
154 |
-
|
155 |
-
|
156 |
-
#iface = gr.Interface(fn=get_sustainability, inputs="textbox", title="CONBERT",description="SUSTAINABILITY TOOL", outputs=gr.HighlightedText(), allow_flagging="never")
|
157 |
-
#iface.launch()
|
158 |
-
|
159 |
-
iface = gr.Interface(fn=quad, inputs=[gr.Dropdown(choices=questions,label='SEARCH QUERY'),gr.inputs.File(label='TXT FILE')], title="CONBERT",description="SUSTAINABILITY TOOL",article='Article', outputs=[gr.outputs.Textbox(label='Answer'),gr.outputs.Textbox(label='Summary'),gr.HighlightedText(label='NER'),gr.HighlightedText(label='CLAIM'),gr.HighlightedText(label='SUSTAINABILITY'),gr.HighlightedText(label='FLS')], allow_flagging="never")
|
160 |
|
161 |
|
162 |
iface.launch()
|
|
|
13 |
import en_core_web_sm
|
14 |
from fincat_utils import extract_context_words
|
15 |
from fincat_utils import bert_embedding_extract
|
16 |
+
from score_fincat import score_fincat
|
17 |
import pickle
|
18 |
+
#lr_clf = pickle.load(open("lr_clf_FiNCAT.pickle",'rb'))
|
19 |
|
20 |
nlp = en_core_web_sm.load()
|
21 |
nltk.download('punkt')
|
|
|
42 |
#SUSTAINABILITY ENDS
|
43 |
|
44 |
#CLAIM STARTS
|
45 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
|
48 |
##Summarization
|
|
|
96 |
return questions_short
|
97 |
questions = load_questions()
|
98 |
questions_short = load_questions_short()
|
99 |
+
|
100 |
+
|
101 |
+
|
102 |
def quad(query,file):
|
103 |
with open(file.name) as f:
|
104 |
paragraph = f.read()
|
|
|
108 |
print('getting predictions')
|
109 |
predictions = run_prediction([query], paragraph, 'marshmellow77/roberta-base-cuad',n_best_size=5)
|
110 |
answer = ""
|
111 |
+
answer_p=""
|
112 |
if predictions['0'] == "":
|
113 |
answer = 'No answer found in document'
|
114 |
else:
|
|
|
117 |
for i in range(1):
|
118 |
raw_answer=data['0'][i]['text']
|
119 |
answer += f"{data['0'][i]['text']} -- \n"
|
120 |
+
answer_p =answer+ f"Probability: {round(data['0'][i]['probability']*100,1)}%\n\n"
|
121 |
+
return answer_p,summarize_text(answer),fin_ner(answer),score_fincat(answer),get_sustainability(answer),fls(answer)
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
|
124 |
+
iface = gr.Interface(fn=quad, inputs=[gr.Dropdown(choices=questions_short,label='SEARCH QUERY'),gr.inputs.File(label='TXT FILE')], title="CONBERT",description="CONTRACT REVIEW TOOL",article='Article', outputs=[gr.outputs.Textbox(label='Answer'),gr.outputs.Textbox(label='Summary'),gr.HighlightedText(label='NER'),gr.HighlightedText(label='CLAIM'),gr.HighlightedText(label='SUSTAINABILITY'),gr.HighlightedText(label='FLS')], allow_flagging="never")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
|
126 |
|
127 |
iface.launch()
|