Time_Series / app.py
Shingome's picture
initial commit
9e5571a
import pandas as pd
import matplotlib.pyplot as plt
import gradio as gr
from statsmodels.tsa.holtwinters import ExponentialSmoothing
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.statespace.sarimax import SARIMAX
def plot_graph(data, algorithm):
df = pd.read_csv(data)
columns = df.columns.values
if len(columns) < 2:
raise gr.Error('Неверная структура данных. Ожидается второй столбец value.')
df['Date'] = pd.to_datetime(df[columns[0]])
df = df.groupby(pd.Grouper(key='Date', freq='ME'))[columns[1]].sum().reset_index()
df.set_index('Date', inplace=True)
if algorithm == 'Exponential Smoothing':
if len(df) < 24:
raise gr.Error("Для Exponential Smoothing нужны данные за как минимум 24 месяца.")
model = ExponentialSmoothing(df[columns[1]], seasonal_periods=12, trend="add", seasonal="add")
model_fit = model.fit()
elif algorithm == 'ARIMA':
model = ARIMA(df[columns[1]], order=(1, 1, 1), seasonal_order=(1, 1, 1, 12))
model_fit = model.fit()
elif algorithm == 'SARIMA':
model = SARIMAX(df[columns[1]], order=(1, 1, 1), seasonal_order=(1, 1, 1, 12))
model_fit = model.fit(disp=False)
last_date = df.index[-1]
forecast_dates = pd.date_range(start=last_date, periods=101, freq='MS')[1:]
prediction = model_fit.forecast(steps=100)
plt.figure(figsize=(10, 5))
plt.plot(df[columns[1]], label=columns[1])
plt.plot(forecast_dates, prediction, label="Прогноз")
plt.title(f'Прогноз {columns[1]} на следующие 100 месяцев')
plt.legend()
return plt
if __name__ == "__main__":
iface = gr.Interface(fn=plot_graph,
inputs=[gr.File(label="\'Date - Value\'. Example: 2010-01-01,100"),
gr.Radio(["Exponential Smoothing", "ARIMA", "SARIMA"],
label='Выберите алгоритм')],
outputs="plot"
)
iface.launch()