Shingome commited on
Commit
9e5571a
·
1 Parent(s): 3a504ea

initial commit

Browse files
Files changed (2) hide show
  1. app.py +54 -0
  2. requirements.txt +4 -0
app.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import matplotlib.pyplot as plt
3
+ import gradio as gr
4
+ from statsmodels.tsa.holtwinters import ExponentialSmoothing
5
+ from statsmodels.tsa.arima.model import ARIMA
6
+ from statsmodels.tsa.statespace.sarimax import SARIMAX
7
+
8
+
9
+ def plot_graph(data, algorithm):
10
+ df = pd.read_csv(data)
11
+
12
+ columns = df.columns.values
13
+
14
+ if len(columns) < 2:
15
+ raise gr.Error('Неверная структура данных. Ожидается второй столбец value.')
16
+
17
+ df['Date'] = pd.to_datetime(df[columns[0]])
18
+ df = df.groupby(pd.Grouper(key='Date', freq='ME'))[columns[1]].sum().reset_index()
19
+ df.set_index('Date', inplace=True)
20
+
21
+ if algorithm == 'Exponential Smoothing':
22
+ if len(df) < 24:
23
+ raise gr.Error("Для Exponential Smoothing нужны данные за как минимум 24 месяца.")
24
+ model = ExponentialSmoothing(df[columns[1]], seasonal_periods=12, trend="add", seasonal="add")
25
+ model_fit = model.fit()
26
+ elif algorithm == 'ARIMA':
27
+ model = ARIMA(df[columns[1]], order=(1, 1, 1), seasonal_order=(1, 1, 1, 12))
28
+ model_fit = model.fit()
29
+ elif algorithm == 'SARIMA':
30
+ model = SARIMAX(df[columns[1]], order=(1, 1, 1), seasonal_order=(1, 1, 1, 12))
31
+ model_fit = model.fit(disp=False)
32
+
33
+ last_date = df.index[-1]
34
+ forecast_dates = pd.date_range(start=last_date, periods=101, freq='MS')[1:]
35
+ prediction = model_fit.forecast(steps=100)
36
+
37
+ plt.figure(figsize=(10, 5))
38
+ plt.plot(df[columns[1]], label=columns[1])
39
+ plt.plot(forecast_dates, prediction, label="Прогноз")
40
+ plt.title(f'Прогноз {columns[1]} на следующие 100 месяцев')
41
+ plt.legend()
42
+
43
+ return plt
44
+
45
+
46
+ if __name__ == "__main__":
47
+ iface = gr.Interface(fn=plot_graph,
48
+ inputs=[gr.File(label="\'Date - Value\'. Example: 2010-01-01,100"),
49
+ gr.Radio(["Exponential Smoothing", "ARIMA", "SARIMA"],
50
+ label='Выберите алгоритм')],
51
+ outputs="plot"
52
+ )
53
+
54
+ iface.launch()
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ gradio==4.33.0
2
+ matplotlib==3.9.0
3
+ pandas==2.2.2
4
+ statsmodels==0.14.2