SaviAnna commited on
Commit
652e55c
·
1 Parent(s): 4bf6cb6

Delete pages/ml_reviews_class.py

Browse files
Files changed (1) hide show
  1. pages/ml_reviews_class.py +0 -48
pages/ml_reviews_class.py DELETED
@@ -1,48 +0,0 @@
1
- from sklearn.feature_extraction.text import CountVectorizer
2
- from sklearn.linear_model import LogisticRegression
3
- import re
4
- import string
5
- import pickle
6
- import streamlit as st
7
-
8
- # Функция очистки текста
9
- def clean(text):
10
- text = text.lower() # нижний регистр
11
- text = re.sub(r'http\S+', " ", text) # удаляем ссылки
12
- text = re.sub(r'@\w+',' ',text) # удаляем упоминания пользователей
13
- text = re.sub(r'#\w+', ' ', text) # удаляем хэштеги
14
- text = re.sub(r'\d+', ' ', text) # удаляем числа
15
- text = text.translate(str.maketrans('', '', string.punctuation))
16
- return text
17
-
18
- # Загрузка весов модели
19
-
20
- model_filename = '/home/nika/ds-phase-2/10-nlp/model_weights.pkl'
21
- with open(model_filename, 'rb') as file:
22
- model = pickle.load(file)
23
-
24
- # Загрузка весов векторизатора
25
- vectorizer = CountVectorizer()
26
- vectorizer_filename = '/home/nika/ds-phase-2/10-nlp/vectorizer_weights.pkl'
27
- with open(vectorizer_filename, 'rb') as file:
28
- vectorizer = pickle.load(file)
29
-
30
- # Само приложение
31
-
32
- st.title("CritiSense")
33
- st.subheader("Movie Review Sentiment Analyzer")
34
- st.write("CritiSense is a powerful app that analyzes the sentiment of movie reviews.")
35
- st.write("Whether you want to know if a review is positive or negative, CritiSense has got you covered.")
36
- st.write("Just enter the review, and our app will provide you with instant sentiment analysis.")
37
- st.write("Make informed decisions about movies with CritiSense!")
38
- user_review = st.text_input("Enter your review:", "")
39
- user_review_clean = clean(user_review)
40
- user_features = vectorizer.transform([user_review_clean])
41
- prediction = model.predict(user_features)
42
-
43
- st.write("Review:", user_review)
44
-
45
- if prediction == 1:
46
- st.markdown("<p style='color: green;'>Sentiment: Positive</p>", unsafe_allow_html=True)
47
- else:
48
- st.markdown("<p style='color: red;'>Sentiment: Negative</p>", unsafe_allow_html=True)