Spaces:
Sleeping
Sleeping
Update pages/✨second.py
Browse files- pages/✨second.py +46 -110
pages/✨second.py
CHANGED
@@ -1,112 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
import base64
|
3 |
-
import streamlit as st
|
4 |
-
import plotly.express as px
|
5 |
-
|
6 |
-
df = px.data.iris()
|
7 |
-
|
8 |
-
@st.cache_data
|
9 |
-
def get_img_as_base64(file):
|
10 |
-
with open(file, "rb") as f:
|
11 |
-
data = f.read()
|
12 |
-
return base64.b64encode(data).decode()
|
13 |
-
|
14 |
-
|
15 |
-
page_bg_img = f"""
|
16 |
-
<style>
|
17 |
-
[data-testid="stAppViewContainer"] > .main {{
|
18 |
-
background-image: url("https://wallpapercave.com/wp/wp6495731.jpg");
|
19 |
-
background-size: 115%;
|
20 |
-
background-position: top left;
|
21 |
-
background-repeat: no-repeat;
|
22 |
-
background-attachment: local;
|
23 |
-
}}
|
24 |
-
|
25 |
-
[data-testid="stSidebar"] > div:first-child {{
|
26 |
-
background-image: url("https://ibb.co/ZBkdJRg");
|
27 |
-
background-size: 115%;
|
28 |
-
background-position: center;
|
29 |
-
background-repeat: no-repeat;
|
30 |
-
background-attachment: fixed;
|
31 |
-
}}
|
32 |
-
|
33 |
-
[data-testid="stHeader"] {{
|
34 |
-
background: rgba(0,0,0,0);
|
35 |
-
}}
|
36 |
-
|
37 |
-
[data-testid="stToolbar"] {{
|
38 |
-
right: 2rem;
|
39 |
-
}}
|
40 |
-
|
41 |
-
div.css-1n76uvr.e1tzin5v0 {{
|
42 |
-
background-color: rgba(238, 238, 238, 0.5);
|
43 |
-
border: 10px solid #EEEEEE;
|
44 |
-
padding: 5% 5% 5% 10%;
|
45 |
-
border-radius: 5px;
|
46 |
-
}}
|
47 |
-
|
48 |
-
</style>
|
49 |
-
"""
|
50 |
-
st.markdown(page_bg_img, unsafe_allow_html=True)
|
51 |
-
|
52 |
-
import tensorflow as tf
|
53 |
-
from tensorflow import keras
|
54 |
-
import numpy as np
|
55 |
-
import matplotlib.pyplot as plt
|
56 |
-
|
57 |
-
################################################################################################
|
58 |
-
#Тут нужно будет добаить модель. Ниже пример:
|
59 |
-
|
60 |
-
# # Загрузка модели
|
61 |
-
# model = keras.models.load_model('cgan_model.h5')
|
62 |
-
|
63 |
-
# # Задание размерностей входных данных модели
|
64 |
-
# latent_dim = 128
|
65 |
-
# num_classes = 10
|
66 |
-
|
67 |
-
# # Функция для генерации изображения
|
68 |
-
# def generate_image(number):
|
69 |
-
# random_latent_vector = tf.random.normal(shape=(1, latent_dim))
|
70 |
-
# one_hot_label = tf.one_hot([number], num_classes)
|
71 |
-
# input_data = tf.concat([random_latent_vector, one_hot_label], axis=1)
|
72 |
-
|
73 |
-
# generated_image = model.predict(input_data)
|
74 |
-
# generated_image = generated_image.reshape(28, 28)
|
75 |
-
# generated_image = tf.image.resize(generated_image[None, ...], (28, 28))[0] # Добавлено [None, ...] для добавления измерения
|
76 |
-
# return generated_image
|
77 |
-
|
78 |
-
################################################################################################
|
79 |
-
|
80 |
-
#Оформление
|
81 |
-
|
82 |
-
col1, col2, col3 = st.columns([1,5,1])
|
83 |
-
with col2:
|
84 |
-
|
85 |
-
st.title('Название модели')
|
86 |
-
|
87 |
-
col1, col2, col3 = st.columns([2,5,2])
|
88 |
-
with col2:
|
89 |
-
|
90 |
-
number = st.slider('Выберите число:', 0, 9, step=1)
|
91 |
-
|
92 |
-
################################################################################################
|
93 |
-
# Часть, отображаемая на странице
|
94 |
-
|
95 |
-
# number = st.slider('Выберите число:', 0, 9, step=1)
|
96 |
-
|
97 |
-
|
98 |
-
# #col1.subheader("Гистограмма total_bill:")
|
99 |
-
|
100 |
-
# # Генерация и отображение изображения
|
101 |
-
# generated_image = generate_image(number)
|
102 |
-
# generated_image_np = generated_image.numpy() # Преобразование в массив NumPy
|
103 |
-
# fig, ax = plt.subplots()
|
104 |
-
# ax.scatter([1, 2], [1, 2], color='black')
|
105 |
-
# plt.imshow(generated_image_np, cmap='gray')
|
106 |
-
# plt.axis('off')
|
107 |
-
# fig.set_size_inches(3, 3)
|
108 |
-
# st.pyplot(fig)
|
109 |
|
110 |
-
|
111 |
-
|
112 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sklearn.feature_extraction.text import CountVectorizer
|
2 |
+
from sklearn.linear_model import LogisticRegression
|
3 |
+
import re
|
4 |
+
import string
|
5 |
+
import pickle
|
6 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# Функция очистки текста
|
9 |
+
def clean(text):
|
10 |
+
text = text.lower() # нижний регистр
|
11 |
+
text = re.sub(r'http\S+', " ", text) # удаляем ссылки
|
12 |
+
text = re.sub(r'@\w+',' ',text) # удаляем упоминания пользователей
|
13 |
+
text = re.sub(r'#\w+', ' ', text) # удаляем хэштеги
|
14 |
+
text = re.sub(r'\d+', ' ', text) # удаляем числа
|
15 |
+
text = text.translate(str.maketrans('', '', string.punctuation))
|
16 |
+
return text
|
17 |
+
|
18 |
+
# Загрузка весов модели
|
19 |
+
|
20 |
+
model_filename = 'model_weights.pkl'
|
21 |
+
with open(model_filename, 'rb') as file:
|
22 |
+
model = pickle.load(file)
|
23 |
+
|
24 |
+
# Загрузка весов векторизатора
|
25 |
+
vectorizer = CountVectorizer()
|
26 |
+
vectorizer_filename = 'vectorizer_weights.pkl'
|
27 |
+
with open(vectorizer_filename, 'rb') as file:
|
28 |
+
vectorizer = pickle.load(file)
|
29 |
+
|
30 |
+
# Само приложение
|
31 |
+
|
32 |
+
st.title("CritiSense")
|
33 |
+
st.subheader("Movie Review Sentiment Analyzer")
|
34 |
+
st.write("CritiSense is a powerful app that analyzes the sentiment of movie reviews.")
|
35 |
+
st.write("Whether you want to know if a review is positive or negative, CritiSense has got you covered.")
|
36 |
+
st.write("Just enter the review, and our app will provide you with instant sentiment analysis.")
|
37 |
+
st.write("Make informed decisions about movies with CritiSense!")
|
38 |
+
user_review = st.text_input("Enter your review:", "")
|
39 |
+
user_review_clean = clean(user_review)
|
40 |
+
user_features = vectorizer.transform([user_review_clean])
|
41 |
+
prediction = model.predict(user_features)
|
42 |
+
|
43 |
+
st.write("Review:", user_review)
|
44 |
+
|
45 |
+
if prediction == 1:
|
46 |
+
st.markdown("<p style='color: green;'>Sentiment: Positive</p>", unsafe_allow_html=True)
|
47 |
+
else:
|
48 |
+
st.markdown("<p style='color: red;'>Sentiment: Negative</p>", unsafe_allow_html=True)
|