Spaces:
Running
Running
import gradio as gr | |
from transformers import AutoImageProcessor, AutoModelForImageClassification | |
import torch | |
from PIL import Image | |
# Load the image processor and model | |
processor = AutoImageProcessor.from_pretrained("ozair23/swin-tiny-patch4-window7-224-finetuned-plantdisease") | |
model = AutoModelForImageClassification.from_pretrained("ozair23/swin-tiny-patch4-window7-224-finetuned-plantdisease") | |
# Define the function to process the image and make predictions | |
def classify_leaf_disease(image): | |
# Preprocess the image | |
inputs = processor(images=image, return_tensors="pt") | |
# Run the model on the image | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# Get the predicted label and confidence score | |
probs = torch.softmax(outputs.logits, dim=1) | |
predicted_class_idx = probs.argmax(dim=1).item() | |
predicted_label = model.config.id2label[predicted_class_idx] | |
confidence_score = probs[0][predicted_class_idx].item() | |
# Format the output | |
return predicted_label, f"{confidence_score:.2f}", image | |
# Create Gradio Interface | |
interface = gr.Interface( | |
fn=classify_leaf_disease, | |
inputs=gr.Image(type="pil"), | |
outputs=[ | |
gr.Textbox(label="Disease Name"), | |
gr.Textbox(label="Confidence Score"), | |
gr.Image(type="pil", label="Uploaded Image") | |
], | |
title="Leaf Disease Identification", | |
description="Upload an image of any plant leaf, and this model will identify the disease and show the confidence score." | |
) | |
# Launch the app | |
if __name__ == "__main__": | |
interface.launch() | |