Spaces:
Running
Running
File size: 1,678 Bytes
d9ce9e6 8d9c7a4 3155a4d d9ce9e6 3155a4d a7eab27 3155a4d 697c4ae d9ce9e6 697c4ae 3155a4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 |
import streamlit as st
from transformers import ViTImageProcessor, AutoModelForImageClassification
from PIL import Image
import requests
from io import BytesIO
# Load the model and processor
@st.cache_data
def load_model():
processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector')
model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector')
return processor, model
processor, model = load_model()
# Define prediction function
def predict_image(image):
try:
# Process the image and make prediction
inputs = processor(images=image, return_tensors="pt")
outputs = model(**inputs)
logits = outputs.logits
# Get predicted class
predicted_class_idx = logits.argmax(-1).item()
predicted_label = model.config.id2label[predicted_class_idx]
return predicted_label
except Exception as e:
return str(e)
# Streamlit app
st.title("NSFW Image Classifier")
# Get image URL from query parameters
query_params = st.query_params()
image_url = query_params.get('image_url', [None])[0]
if image_url:
try:
# Load image from URL
response = requests.get(image_url)
image = Image.open(BytesIO(response.content))
st.image(image, caption='Image from URL', use_column_width=True)
st.write("")
st.write("Classifying...")
# Predict and display result
prediction = predict_image(image)
st.write(f"Predicted Class: {prediction}")
except Exception as e:
st.write(f"Error: {e}")
else:
st.write("Please provide an image URL using the 'image_url' query parameter.")
|