SaiLochana's picture
Upload folder using huggingface_hub
4a701b5
from __future__ import annotations
import os
# import openai
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from typing import Any
from langchain.base_language import BaseLanguageModel
from langchain.chains.llm import LLMChain
import gradio as gr
# import streamlit as st
# from google.cloud import aiplatform
import vertexai
from vertexai.language_models import TextGenerationModel, TextEmbeddingModel
# import vertexai
# PROJECT_ID = "[your-project-id]" # @param {type:"string"}
# vertexai.init(project=PROJECT_ID, location="us-central1")
# from vertexai.language_models import TextGenerationModel
# OPENAI_API_KEY = os.environ["OPENAI_API_KEY"]
# OPENAI_API_KEY='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'
PROJECT_ID = "agileai-poc"
vertexai.init(project=PROJECT_ID, location="us-central1")
parameters = {
"max_output_tokens": 256,
"temperature": 0.2,
"top_p": 0.8,
}
generation_model = TextGenerationModel.from_pretrained("text-bison@001")
print("model called")
response = generation_model.predict(
"Generate a product description that is creative and SEO compliant. Emojis should be added to make product description look appealing. Begin!", **parameters)
print(response)
embedding_model = TextEmbeddingModel.from_pretrained("textembedding-gecko@001")
print("model2 called")
prompt_file = "prompt_template.txt"
print(generation_model.predict("describe", **parameters))
class ProductDescGen(LLMChain):
"""LLM Chain specifically for generating multi paragraph rich text product description using emojis."""
@classmethod
def from_llm(
cls, llm: BaseLanguageModel, prompt: str, **kwargs: Any
) -> ProductDescGen:
"""Load ProductDescGen Chain from LLM."""
return cls(llm=llm, prompt=prompt, **kwargs)
def product_desc_generator(product_name, keywords):
with open(prompt_file, "r") as file:
prompt_template = file.read()
# # llm = ChatOpenAI(
# # model_name="gpt-3.5-turbo",
# # temperature=0.7,
# # openai_api_key=OPENAI_API_KEY,
# # )
llm = vertexai(max_output_tokens=256, temperature=0.2, top_p=0.8)
print("runned")
PROMPT = PromptTemplate(
input_variables=["product_name", "keywords"], template=prompt_template
)
# # llm = ChatOpenAI(
# # model_name="gpt-3.5-turbo",
# # temperature=0.7,
# # openai_api_key=OPENAI_API_KEY,
# # )
# llm2 = vertexai(max_output_tokens=256, temperature=0.2, top_p=0.8)
ProductDescGen_chain = ProductDescGen.from_llm(llm=llm, prompt=PROMPT)
ProductDescGen_query = ProductDescGen_chain.apply_and_parse(
[{"product_name": product_name, "keywords": keywords}]
)
# response = generation_model.predict(
# "Generate a product description that is creative and SEO compliant. Emojis should be added to make product description look appealing. Begin!", **llm)
return ProductDescGen_query[0]["text"] # , {response.text}
with gr.Blocks() as demo:
gr.HTML("""<h1>Welcome to Product Description Generator</h1>""")
gr.Markdown(
"Generate Product Description for your products instantly!<br>"
"Provide product name and keywords related to that product. Click on 'Generate Description' button and multi-paragraph rich text product description will be genrated instantly.<br>"
"Note: Generated product description is SEO compliant and can be used to populate product information."
)
with gr.Tab("Generate Product Description!"):
product_name = gr.Textbox(
label="Product Name",
placeholder="Nike Shoes",
)
keywords = gr.Textbox(
label="Keywords (separated by commas)",
placeholder="black shoes, leather shoes for men, water resistant",
)
product_description = gr.Textbox(label="Product Description")
click_button = gr.Button(value="Generate Description!")
click_button.click(
product_desc_generator, [
product_name, keywords], product_description
)
demo.launch(share=True)