from __future__ import annotations import os # import openai from langchain.prompts import PromptTemplate from langchain.chat_models import ChatOpenAI from typing import Any from langchain.base_language import BaseLanguageModel from langchain.chains.llm import LLMChain import gradio as gr # import streamlit as st # from google.cloud import aiplatform import vertexai from vertexai.language_models import TextGenerationModel, TextEmbeddingModel # import vertexai # PROJECT_ID = "[your-project-id]" # @param {type:"string"} # vertexai.init(project=PROJECT_ID, location="us-central1") # from vertexai.language_models import TextGenerationModel # OPENAI_API_KEY = os.environ["OPENAI_API_KEY"] # OPENAI_API_KEY='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' PROJECT_ID = "agileai-poc" vertexai.init(project=PROJECT_ID, location="us-central1") parameters = { "max_output_tokens": 256, "temperature": 0.2, "top_p": 0.8, } generation_model = TextGenerationModel.from_pretrained("text-bison@001") print("model called") response = generation_model.predict( "Generate a product description that is creative and SEO compliant. Emojis should be added to make product description look appealing. Begin!", **parameters) print(response) embedding_model = TextEmbeddingModel.from_pretrained("textembedding-gecko@001") print("model2 called") prompt_file = "prompt_template.txt" print(generation_model.predict("describe", **parameters)) class ProductDescGen(LLMChain): """LLM Chain specifically for generating multi paragraph rich text product description using emojis.""" @classmethod def from_llm( cls, llm: BaseLanguageModel, prompt: str, **kwargs: Any ) -> ProductDescGen: """Load ProductDescGen Chain from LLM.""" return cls(llm=llm, prompt=prompt, **kwargs) def product_desc_generator(product_name, keywords): with open(prompt_file, "r") as file: prompt_template = file.read() # # llm = ChatOpenAI( # # model_name="gpt-3.5-turbo", # # temperature=0.7, # # openai_api_key=OPENAI_API_KEY, # # ) llm = vertexai(max_output_tokens=256, temperature=0.2, top_p=0.8) print("runned") PROMPT = PromptTemplate( input_variables=["product_name", "keywords"], template=prompt_template ) # # llm = ChatOpenAI( # # model_name="gpt-3.5-turbo", # # temperature=0.7, # # openai_api_key=OPENAI_API_KEY, # # ) # llm2 = vertexai(max_output_tokens=256, temperature=0.2, top_p=0.8) ProductDescGen_chain = ProductDescGen.from_llm(llm=llm, prompt=PROMPT) ProductDescGen_query = ProductDescGen_chain.apply_and_parse( [{"product_name": product_name, "keywords": keywords}] ) # response = generation_model.predict( # "Generate a product description that is creative and SEO compliant. Emojis should be added to make product description look appealing. Begin!", **llm) return ProductDescGen_query[0]["text"] # , {response.text} with gr.Blocks() as demo: gr.HTML("""

Welcome to Product Description Generator

""") gr.Markdown( "Generate Product Description for your products instantly!
" "Provide product name and keywords related to that product. Click on 'Generate Description' button and multi-paragraph rich text product description will be genrated instantly.
" "Note: Generated product description is SEO compliant and can be used to populate product information." ) with gr.Tab("Generate Product Description!"): product_name = gr.Textbox( label="Product Name", placeholder="Nike Shoes", ) keywords = gr.Textbox( label="Keywords (separated by commas)", placeholder="black shoes, leather shoes for men, water resistant", ) product_description = gr.Textbox(label="Product Description") click_button = gr.Button(value="Generate Description!") click_button.click( product_desc_generator, [ product_name, keywords], product_description ) demo.launch(share=True)