|
import pandas as pd |
|
from sentence_transformers import SentenceTransformer, util |
|
from transformers import pipeline |
|
import torch |
|
import gradio as gr |
|
import os |
|
|
|
|
|
csv_file_path = os.path.join(os.getcwd(), 'analytics_vidhya_data.csv') |
|
|
|
|
|
df = pd.read_csv(csv_file_path, encoding='ISO-8859-1') |
|
|
|
|
|
model = SentenceTransformer('multi-qa-mpnet-base-dot-v1') |
|
|
|
|
|
df['full_text'] = df.iloc[:,0] + " " + df.iloc[:,1] + " " + df['Instructor Name'] + " " + str(df['Rating']) + " " + df['Category'] |
|
|
|
|
|
course_embeddings = model.encode(df['full_text'].tolist(), convert_to_tensor=True) |
|
|
|
|
|
def expand_query(query): |
|
paraphraser = pipeline('text2text-generation', model='Vamsi/T5_Paraphrase_Paws') |
|
expanded_queries = paraphraser(query, num_return_sequences=3, max_length=50, do_sample=True) |
|
return [q['generated_text'] for q in expanded_queries] |
|
|
|
|
|
def search_courses(query, level_filter=None, category_filter=None, top_k=3): |
|
|
|
expanded_queries = expand_query(query) |
|
|
|
|
|
all_similarities = [] |
|
|
|
for expanded_query in expanded_queries: |
|
|
|
query_embedding = model.encode(expanded_query, convert_to_tensor=True) |
|
|
|
|
|
similarities = util.pytorch_cos_sim(query_embedding, course_embeddings)[0] |
|
|
|
|
|
all_similarities.append(similarities) |
|
|
|
|
|
aggregated_similarities = torch.max(torch.stack(all_similarities), dim=0)[0] |
|
|
|
|
|
filtered_df = df.copy() |
|
if level_filter: |
|
filtered_df = filtered_df[filtered_df['Level of Difficulty'] == level_filter] |
|
if category_filter: |
|
filtered_df = filtered_df[filtered_df['Category'] == category_filter] |
|
|
|
if filtered_df.empty: |
|
return "<p>No matching courses found.</p>" |
|
|
|
|
|
filtered_similarities = aggregated_similarities[filtered_df.index] |
|
|
|
|
|
top_results = filtered_similarities.topk(k=min(top_k, len(filtered_similarities))) |
|
|
|
|
|
results = [] |
|
for idx in top_results.indices: |
|
idx = int(idx) |
|
course_title = filtered_df.iloc[idx]['Course Title'] |
|
course_description = filtered_df.iloc[idx,1] |
|
course_url = filtered_df.iloc[idx,-1] |
|
|
|
|
|
|
|
course_link = f'<a href="{course_url}" target="_blank">{course_title}</a>' |
|
results.append(f"<strong>{course_link}</strong><br>{course_description}<br><br>") |
|
|
|
|
|
return "<ol>" + "".join([f"<li>{result}</li>" for result in results]) + "</ol>" |
|
|
|
|
|
def create_gradio_interface(): |
|
with gr.Blocks() as demo: |
|
gr.Markdown("# π Analytics Vidhya Free Courses") |
|
gr.Markdown("Enter your query and use filters to narrow down the search.") |
|
|
|
|
|
query = gr.Textbox(label="π Search for a course", placeholder="Enter course topic or description") |
|
|
|
|
|
with gr.Accordion("π Filters", open=False): |
|
level_filter = gr.Dropdown(choices=["Beginner", "Intermediate", "Advanced"], label="π Course Level", multiselect=False) |
|
category_filter = gr.Dropdown(choices=["Data Science", "Machine Learning", "Deep Learning", "AI", "NLP"], label="π Category", multiselect=False) |
|
|
|
|
|
search_button = gr.Button("Search") |
|
|
|
|
|
output = gr.HTML(label="Search Results") |
|
|
|
|
|
search_button.click(fn=search_courses, inputs=[query, level_filter, category_filter], outputs=output) |
|
|
|
return demo |
|
|
|
|
|
demo = create_gradio_interface() |
|
demo.launch(share=True, debug=True) |
|
|