File size: 4,568 Bytes
1ac3192 f7d884b 1ac3192 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import pandas as pd
from sentence_transformers import SentenceTransformer, util
from transformers import pipeline
import torch
import gradio as gr
import os
# Use the relative path where the CSV is uploaded
csv_file_path = os.path.join(os.getcwd(), 'analytics_vidhya_data.csv')
# Load the dataset
df = pd.read_csv(csv_file_path, encoding='ISO-8859-1')
# Load the pre-trained model for embeddings (using SentenceTransformers)
model = SentenceTransformer('multi-qa-mpnet-base-dot-v1')
# Combine title and description to create a full text for each course
df['full_text'] = df.iloc[:,0] + " " + df.iloc[:,1] + " " + df['Instructor Name'] + " " + str(df['Rating']) + " " + df['Category']
# Convert full course texts into embeddings
course_embeddings = model.encode(df['full_text'].tolist(), convert_to_tensor=True)
# Function to expand the query using paraphrasing
def expand_query(query):
paraphraser = pipeline('text2text-generation', model='Vamsi/T5_Paraphrase_Paws')
expanded_queries = paraphraser(query, num_return_sequences=3, max_length=50, do_sample=True)
return [q['generated_text'] for q in expanded_queries]
# Function to search for the most relevant courses
def search_courses(query, level_filter=None, category_filter=None, top_k=3):
# Step 1: Expand the query using paraphrasing
expanded_queries = expand_query(query)
# Step 2: Initialize an array to store all similarities
all_similarities = []
for expanded_query in expanded_queries:
# Convert each expanded query into an embedding
query_embedding = model.encode(expanded_query, convert_to_tensor=True)
# Compute cosine similarities between the query embedding and course embeddings
similarities = util.pytorch_cos_sim(query_embedding, course_embeddings)[0]
# Append to the list of all similarities
all_similarities.append(similarities)
# Step 3: Convert the list of tensors to a single tensor by taking the maximum similarity for each course
aggregated_similarities = torch.max(torch.stack(all_similarities), dim=0)[0]
# Step 4: Apply filters
filtered_df = df.copy()
if level_filter:
filtered_df = filtered_df[filtered_df['Level of Difficulty'] == level_filter]
if category_filter:
filtered_df = filtered_df[filtered_df['Category'] == category_filter]
if filtered_df.empty:
return "<p>No matching courses found.</p>"
# Recalculate similarities for the filtered data
filtered_similarities = aggregated_similarities[filtered_df.index]
# Step 5: Get top_k most similar courses
top_results = filtered_similarities.topk(k=min(top_k, len(filtered_similarities)))
# Prepare the output as clickable links
results = []
for idx in top_results.indices:
idx = int(idx)
course_title = filtered_df.iloc[idx]['Course Title']
course_description = filtered_df.iloc[idx,1]
course_url = filtered_df.iloc[idx,-1]
# Format the result as a clickable hyperlink using raw HTML
course_link = f'<a href="{course_url}" target="_blank">{course_title}</a>'
results.append(f"<strong>{course_link}</strong><br>{course_description}<br><br>")
# Combine all results into an HTML formatted list
return "<ol>" + "".join([f"<li>{result}</li>" for result in results]) + "</ol>"
# Create Gradio UI
def create_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("# π Analytics Vidhya Free Courses")
gr.Markdown("Enter your query and use filters to narrow down the search.")
# Input elements
query = gr.Textbox(label="π Search for a course", placeholder="Enter course topic or description")
# Filters (in a collapsible form)
with gr.Accordion("π Filters", open=False):
level_filter = gr.Dropdown(choices=["Beginner", "Intermediate", "Advanced"], label="π Course Level", multiselect=False)
category_filter = gr.Dropdown(choices=["Data Science", "Machine Learning", "Deep Learning", "AI", "NLP"], label="π Category", multiselect=False)
# Search button
search_button = gr.Button("Search")
# Output HTML for displaying results
output = gr.HTML(label="Search Results")
# On button click, trigger the search function
search_button.click(fn=search_courses, inputs=[query, level_filter, category_filter], outputs=output)
return demo
# Launch Gradio interface
demo = create_gradio_interface()
demo.launch(share=True, debug=True)
|