object-detection / yolo_fire.py
mingyang91's picture
yolo fire
201909f verified
raw
history blame
1.75 kB
import random
from PIL import ImageDraw, Image
from huggingface_hub import hf_hub_download
from ultralytics import YOLO
# Load model
weight_file = hf_hub_download("SHOU-ISD/fire-and-smoke", "yolov8n.pt")
model = YOLO(weight_file) # pretrained YOLOv8n model
# Helper Functions for Plotting BBoxes
def plot_one_box(x, img, color=None, label=None, line_thickness=None):
width, height = img.size
tl = line_thickness or round(0.002 * (width + height) / 2) + 1 # line/font thickness
color = color or (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3]))
img_draw = ImageDraw.Draw(img)
img_draw.rectangle((c1[0], c1[1], c2[0], c2[1]), outline=color, width=tl)
if label:
tf = max(tl - 1, 1) # font thickness
x1, y1, x2, y2 = img_draw.textbbox(c1, label, stroke_width=tf)
img_draw.rectangle((x1, y1, x2, y2), fill=color)
img_draw.text((x1, y1), label, fill=(255, 255, 255))
# Ploting Bounding Box on img
def add_bboxes(pil_img, result, confidence=0.6):
for box in result.boxes:
[cl] = box.cls.tolist()
[conf] = box.conf.tolist()
if conf < confidence:
continue
[rect] = box.xyxy.tolist()
text = f'{result.names[cl]}: {conf: 0.2f}'
plot_one_box(x=rect, img=pil_img, label=text)
return pil_img
def detect(im, confidence):
results = model(source=im)
res_img = im
for result in results:
res_img = add_bboxes(res_img, result, confidence)
return res_img
if __name__ == '__main__':
im = Image.open("./tests/fire1.jpg")
results = model(source=im)
for result in results:
im = add_bboxes(im, result)
im.show()