import random from PIL import ImageDraw, Image from huggingface_hub import hf_hub_download from ultralytics import YOLO # Load model weight_file = hf_hub_download("SHOU-ISD/fire-and-smoke", "yolov8n.pt") model = YOLO(weight_file) # pretrained YOLOv8n model # Helper Functions for Plotting BBoxes def plot_one_box(x, img, color=None, label=None, line_thickness=None): width, height = img.size tl = line_thickness or round(0.002 * (width + height) / 2) + 1 # line/font thickness color = color or (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) c1, c2 = (int(x[0]), int(x[1])), (int(x[2]), int(x[3])) img_draw = ImageDraw.Draw(img) img_draw.rectangle((c1[0], c1[1], c2[0], c2[1]), outline=color, width=tl) if label: tf = max(tl - 1, 1) # font thickness x1, y1, x2, y2 = img_draw.textbbox(c1, label, stroke_width=tf) img_draw.rectangle((x1, y1, x2, y2), fill=color) img_draw.text((x1, y1), label, fill=(255, 255, 255)) # Ploting Bounding Box on img def add_bboxes(pil_img, result, confidence=0.6): for box in result.boxes: [cl] = box.cls.tolist() [conf] = box.conf.tolist() if conf < confidence: continue [rect] = box.xyxy.tolist() text = f'{result.names[cl]}: {conf: 0.2f}' plot_one_box(x=rect, img=pil_img, label=text) return pil_img def detect(im, confidence): results = model(source=im) res_img = im for result in results: res_img = add_bboxes(res_img, result, confidence) return res_img if __name__ == '__main__': im = Image.open("./tests/fire1.jpg") results = model(source=im) for result in results: im = add_bboxes(im, result) im.show()