File size: 6,316 Bytes
1c14bfe
447a3ce
9d444ef
 
 
447a3ce
1c14bfe
9d444ef
1c14bfe
 
e54639b
1c14bfe
 
9d444ef
 
 
 
 
 
 
 
 
c41e19f
 
5b34f1e
c41e19f
5b34f1e
c41e19f
 
 
5b34f1e
c41e19f
 
 
 
 
 
 
dd20e99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c41e19f
9d444ef
 
dd20e99
c41e19f
 
 
 
88af9ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c41e19f
 
 
 
 
9d444ef
dd20e99
 
 
 
 
 
 
9d444ef
dd20e99
 
 
 
 
 
 
 
 
 
9d444ef
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
title: panoptic-quality
tags:
- evaluate
- metric
description: PanopticQuality score
sdk: gradio
sdk_version: 3.19.1
app_file: app.py
pinned: false
emoji: πŸ–ΌοΈ
---

# SEA-AI/PanopticQuality

This hugging face metric uses `seametrics.segmentation.PanopticQuality` under the hood to compute a panoptic quality score. It is a wrapper class for the torchmetrics class [`torchmetrics.detection.PanopticQuality`](https://lightning.ai/docs/torchmetrics/stable/detection/panoptic_quality.html). 

## Getting Started

To get started with PanopticQuality, make sure you have the necessary dependencies installed. This metric relies on the `evaluate`, `seametrics` and `seametrics[segmentation]`libraries for metric calculation and integration with FiftyOne datasets.

### Basic Usage
```python
>>> import evaluate
>>> from seametrics.payload.processor import PayloadProcessor
>>> MODEL_FIELD = ["maskformer-27k-100ep"]
>>> payload = PayloadProcessor("SAILING_PANOPTIC_DATASET_QA",
>>>                         gt_field="ground_truth_det",
>>>                         models=MODEL_FIELD,
>>>                         sequence_list=["Trip_55_Seq_2", "Trip_197_Seq_1", "Trip_197_Seq_68"],
>>>                         excluded_classes=[""]).payload
>>> module = evaluate.load("SEA-AI/PanopticQuality")
>>> module.add_payload(payload, model_name=MODEL_FIELD[0])
>>> module.compute()
100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 3/3 [00:03<00:00,  1.30s/it]
Added data ...
Start computing ...
Finished!
{'scores': {'MOTORBOAT': [0.18632257426639526,
   0.698709617058436,
   0.2666666805744171],
  'FAR_AWAY_OBJECT': [0.0, 0.0, 0.0],
  'SAILING_BOAT_WITH_CLOSED_SAILS': [0.0, 0.0, 0.0],
  'SHIP': [0.3621737026917471, 0.684105846616957, 0.529411792755127],
  'WATERCRAFT': [0.0, 0.0, 0.0],
  'SPHERICAL_BUOY': [0.0, 0.0, 0.0],
  'FLOTSAM': [0.0, 0.0, 0.0],
  'SAILING_BOAT_WITH_OPEN_SAILS': [0.0, 0.0, 0.0],
  'CONTAINER': [0.0, 0.0, 0.0],
  'PILLAR_BUOY': [0.0, 0.0, 0.0],
  'AERIAL_ANIMAL': [0.0, 0.0, 0.0],
  'HUMAN_IN_WATER': [0.0, 0.0, 0.0],
  'WOODEN_LOG': [0.0, 0.0, 0.0],
  'MARITIME_ANIMAL': [0.0, 0.0, 0.0],
  'WATER': [0.9397601008415222, 0.9397601008415222, 1.0],
  'SKY': [0.9674496332804362, 0.9674496332804362, 1.0],
  'LAND': [0.30757412078761204, 0.8304501533508301, 0.37037035822868347],
  'CONSTRUCTION': [0.0, 0.0, 0.0],
  'OWN_BOAT': [0.0, 0.0, 0.0],
  'ALL': [0.14543579641409013, 0.21686712374464112, 0.16665520166095935]},
 'numbers': {'MOTORBOAT': [6, 15, 18, 4.1922577023506165],
  'FAR_AWAY_OBJECT': [0, 8, 9, 0.0],
  'SAILING_BOAT_WITH_CLOSED_SAILS': [0, 2, 0, 0.0],
  'SHIP': [9, 1, 15, 6.156952619552612],
  'WATERCRAFT': [0, 9, 12, 0.0],
  'SPHERICAL_BUOY': [0, 4, 22, 0.0],
  'FLOTSAM': [0, 0, 1, 0.0],
  'SAILING_BOAT_WITH_OPEN_SAILS': [0, 6, 0, 0.0],
  'CONTAINER': [0, 0, 0, 0.0],
  'PILLAR_BUOY': [0, 0, 9, 0.0],
  'AERIAL_ANIMAL': [0, 0, 0, 0.0],
  'HUMAN_IN_WATER': [0, 0, 0, 0.0],
  'WOODEN_LOG': [0, 0, 0, 0.0],
  'MARITIME_ANIMAL': [0, 0, 0, 0.0],
  'WATER': [15, 0, 0, 14.096401512622833],
  'SKY': [15, 0, 0, 14.511744499206543],
  'LAND': [5, 9, 8, 4.15225076675415],
  'CONSTRUCTION': [0, 0, 0, 0.0],
  'OWN_BOAT': [0, 0, 8, 0.0],
  'ALL': [50, 54, 102, 43.109607100486755]}}
```

## Metric Settings
The metric takes four optional input parameters: __label2id__, __stuff__, __per_class__ and __split_sq_rq__.

* `label2id: Dict[str, int]`: this dictionary is used to map string labels to an integer representation.
    if not provided a default setting will be used:
        `{'WATER': 0,
        'SKY': 1,
        'LAND': 2,
        'MOTORBOAT': 3,
        'FAR_AWAY_OBJECT': 4,
        'SAILING_BOAT_WITH_CLOSED_SAILS': 5,
        'SHIP': 6,
        'WATERCRAFT': 7,
        'SPHERICAL_BUOY': 8,
        'CONSTRUCTION': 9,
        'FLOTSAM': 10,
        'SAILING_BOAT_WITH_OPEN_SAILS': 11,
        'CONTAINER': 12,
        'PILLAR_BUOY': 13,
        'AERIAL_ANIMAL': 14,
        'HUMAN_IN_WATER': 15,
        'OWN_BOAT': 16,
        'WOODEN_LOG': 17,
        'MARITIME_ANIMAL': 18}
        `
* `stuff: List[str]`: this list holds all string labels that belong to stuff.
    if not provided a default setting will be used:
        `
        ["WATER", "SKY", "LAND", "CONSTRUCTION", "ICE", "OWN_BOAT"]`

* `per_class: bool = True`: By default, the results are split up per class.
    Setting this to False will aggregate the results:
      - average the "scores"
      - sum up the "numbers"
* `split_sq_rq: bool = True`: By default, the PQ-score is returned in three parts: the PQ score itself, and split into the segmentation quality (SQ) and recognition quality (RQ) part.
    Setting this to False will aggregate return the PQ score only (PQ=RQ*SQ).

## Output Values
A dictionary containing the following keys:
* __scores__: This is a dictionary, that contains a key for each label, if `per_class == True`. Otherwise it only contains the key __all__.
              For each key, it contains a list that holds the scores in the following order: PQ, SQ and RQ. If `split_sq_rq == False`, the list consists of PQ only.
* __numbers__: This is a dictionary, that contains a key for each label, if `per_class == True`. Otherwise it only contains the key __all__.
               For each key, it contains a list that consists of four elements: TP, FP, FN and IOU:
                 - __TP__: number of true positive predictions
                 - __FP__: number of false positive predictions
                 - __FN__: number of false negative predictions
                 - __IOU__: sum of IOU of all TP predictions with ground truth
               With all these values, it is possible to calculate the final scores.

## Further References

- **seametrics Library**: Explore the [seametrics GitHub repository](https://github.com/SEA-AI/seametrics/tree/main) for more details on the underlying library.
- **Torchmetrics**: https://lightning.ai/docs/torchmetrics/stable/detection/panoptic_quality.html
- **Understanding Metrics**: The Panoptic Segmentation task, as well as Panoptic Quality as the evaluation metric, were introduced [in this paper](https://arxiv.org/pdf/1801.00868.pdf).

## Contribution

Your contributions are welcome! If you'd like to improve SEA-AI/PanopticQuality or add new features, please feel free to fork the repository, make your changes, and submit a pull request.