franzi2505 commited on
Commit
dd20e99
1 Parent(s): 4f17999

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +60 -3
README.md CHANGED
@@ -36,11 +36,52 @@ To get started with PanopticQuality, make sure you have the necessary dependenci
36
  Added data ...
37
  Start computing ...
38
  Finished!
39
- tensor(0.2082, dtype=torch.float64)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ```
41
 
42
  ## Metric Settings
43
- The metric takes two optional input parameters: __label2id__ and __stuff__.
44
 
45
  * `label2id: Dict[str, int]`: this dictionary is used to map string labels to an integer representation.
46
  if not provided a default setting will be used:
@@ -69,8 +110,24 @@ The metric takes two optional input parameters: __label2id__ and __stuff__.
69
  `
70
  ["WATER", "SKY", "LAND", "CONSTRUCTION", "ICE", "OWN_BOAT"]`
71
 
 
 
 
 
 
 
 
72
  ## Output Values
73
- A single float number between 0 and 1 is returned, which represents the PQ score. The bigger the number the better the PQ score, and vice versa.
 
 
 
 
 
 
 
 
 
74
 
75
  ## Further References
76
 
 
36
  Added data ...
37
  Start computing ...
38
  Finished!
39
+ {'scores': {'MOTORBOAT': [0.18632257426639526,
40
+ 0.698709617058436,
41
+ 0.2666666805744171],
42
+ 'FAR_AWAY_OBJECT': [0.0, 0.0, 0.0],
43
+ 'SAILING_BOAT_WITH_CLOSED_SAILS': [0.0, 0.0, 0.0],
44
+ 'SHIP': [0.3621737026917471, 0.684105846616957, 0.529411792755127],
45
+ 'WATERCRAFT': [0.0, 0.0, 0.0],
46
+ 'SPHERICAL_BUOY': [0.0, 0.0, 0.0],
47
+ 'FLOTSAM': [0.0, 0.0, 0.0],
48
+ 'SAILING_BOAT_WITH_OPEN_SAILS': [0.0, 0.0, 0.0],
49
+ 'CONTAINER': [0.0, 0.0, 0.0],
50
+ 'PILLAR_BUOY': [0.0, 0.0, 0.0],
51
+ 'AERIAL_ANIMAL': [0.0, 0.0, 0.0],
52
+ 'HUMAN_IN_WATER': [0.0, 0.0, 0.0],
53
+ 'WOODEN_LOG': [0.0, 0.0, 0.0],
54
+ 'MARITIME_ANIMAL': [0.0, 0.0, 0.0],
55
+ 'WATER': [0.9397601008415222, 0.9397601008415222, 1.0],
56
+ 'SKY': [0.9674496332804362, 0.9674496332804362, 1.0],
57
+ 'LAND': [0.30757412078761204, 0.8304501533508301, 0.37037035822868347],
58
+ 'CONSTRUCTION': [0.0, 0.0, 0.0],
59
+ 'OWN_BOAT': [0.0, 0.0, 0.0],
60
+ 'ALL': [0.14543579641409013, 0.21686712374464112, 0.16665520166095935]},
61
+ 'numbers': {'MOTORBOAT': [6, 15, 18, 4.1922577023506165],
62
+ 'FAR_AWAY_OBJECT': [0, 8, 9, 0.0],
63
+ 'SAILING_BOAT_WITH_CLOSED_SAILS': [0, 2, 0, 0.0],
64
+ 'SHIP': [9, 1, 15, 6.156952619552612],
65
+ 'WATERCRAFT': [0, 9, 12, 0.0],
66
+ 'SPHERICAL_BUOY': [0, 4, 22, 0.0],
67
+ 'FLOTSAM': [0, 0, 1, 0.0],
68
+ 'SAILING_BOAT_WITH_OPEN_SAILS': [0, 6, 0, 0.0],
69
+ 'CONTAINER': [0, 0, 0, 0.0],
70
+ 'PILLAR_BUOY': [0, 0, 9, 0.0],
71
+ 'AERIAL_ANIMAL': [0, 0, 0, 0.0],
72
+ 'HUMAN_IN_WATER': [0, 0, 0, 0.0],
73
+ 'WOODEN_LOG': [0, 0, 0, 0.0],
74
+ 'MARITIME_ANIMAL': [0, 0, 0, 0.0],
75
+ 'WATER': [15, 0, 0, 14.096401512622833],
76
+ 'SKY': [15, 0, 0, 14.511744499206543],
77
+ 'LAND': [5, 9, 8, 4.15225076675415],
78
+ 'CONSTRUCTION': [0, 0, 0, 0.0],
79
+ 'OWN_BOAT': [0, 0, 8, 0.0],
80
+ 'ALL': [50, 54, 102, 43.109607100486755]}}
81
  ```
82
 
83
  ## Metric Settings
84
+ The metric takes four optional input parameters: __label2id__, __stuff__, __per_class__ and __split_sq_rq__.
85
 
86
  * `label2id: Dict[str, int]`: this dictionary is used to map string labels to an integer representation.
87
  if not provided a default setting will be used:
 
110
  `
111
  ["WATER", "SKY", "LAND", "CONSTRUCTION", "ICE", "OWN_BOAT"]`
112
 
113
+ * `per_class: bool = True`: By default, the results are split up per class.
114
+ Setting this to False will aggregate the results:
115
+ - average the "scores"
116
+ - sum up the "numbers"
117
+ * `split_sq_rq: bool = True`: By default, the PQ-score is returned in three parts: the PQ score itself, and split into the segmentation quality (SQ) and recognition quality (RQ) part.
118
+ Setting this to False will aggregate return the PQ score only (PQ=RQ*SQ).
119
+
120
  ## Output Values
121
+ A dictionary containing the following keys:
122
+ * __scores__: This is a dictionary, that contains a key for each label, if `per_class == True`. Otherwise it only contains the key __all__.
123
+ For each key, it contains a list that holds the scores in the following order: PQ, SQ and RQ. If `split_sq_rq == False`, the list consists of PQ only.
124
+ * __numbers__: This is a dictionary, that contains a key for each label, if `per_class == True`. Otherwise it only contains the key __all__.
125
+ For each key, it contains a list that consists of four elements: TP, FP, FN and IOU:
126
+ - __TP__: number of true positive predictions
127
+ - __FP__: number of false positive predictions
128
+ - __FN__: number of false negative predictions
129
+ - __IOU__: sum of IOU of all TP predictions with ground truth
130
+ With all these values, it is possible to calculate the final scores.
131
 
132
  ## Further References
133