Spaces:
Running
Running
import tensorflow as tf | |
from keras import backend as K | |
import numpy as np | |
import scipy | |
import os | |
import cv2 as cv | |
def bright_mae(y_true, y_pred): | |
return K.mean(K.abs(y_pred[:,:,:,:3] - y_true[:,:,:,:3])) | |
def bright_mse(y_true, y_pred): | |
return K.mean((y_pred[:,:,:,:3] - y_true[:,:,:,:3])**2) | |
def bright_AB(y_true, y_pred): | |
return K.abs(K.mean(y_true[:,:,:,:3])-K.mean(y_pred[:,:,:,:3])) | |
def log10(x): | |
numerator = K.log(x) | |
denominator = K.log(K.constant(10, dtype=numerator.dtype)) | |
return numerator / denominator | |
def bright_psnr(y_true, y_pred): | |
mse = K.mean((K.abs(y_pred[:,:,:,:3] - y_true[:,:,:,:3])) ** 2) | |
max_num = 1.0 | |
psnr = 10 * log10(max_num ** 2 / mse) | |
return psnr | |
def _tf_fspecial_gauss(size, sigma): | |
"""Function to mimic the 'fspecial' gaussian MATLAB function | |
""" | |
x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1] | |
x_data = np.expand_dims(x_data, axis=-1) | |
x_data = np.expand_dims(x_data, axis=-1) | |
y_data = np.expand_dims(y_data, axis=-1) | |
y_data = np.expand_dims(y_data, axis=-1) | |
x = tf.constant(x_data, dtype=tf.float32) | |
y = tf.constant(y_data, dtype=tf.float32) | |
g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2))) | |
return g / tf.reduce_sum(g) | |
def tf_ssim(img1, img2, cs_map=False, mean_metric=True, size=11, sigma=1.5): | |
window = _tf_fspecial_gauss(size, sigma) # window shape [size, size] | |
K1 = 0.01 | |
K2 = 0.03 | |
L = 1 # depth of image (255 in case the image has a differnt scale) | |
C1 = (K1*L)**2 | |
C2 = (K2*L)**2 | |
mu1 = tf.nn.conv2d(img1, window, strides=[1,1,1,1], padding='VALID') | |
mu2 = tf.nn.conv2d(img2, window, strides=[1,1,1,1],padding='VALID') | |
mu1_sq = mu1*mu1 | |
mu2_sq = mu2*mu2 | |
mu1_mu2 = mu1*mu2 | |
sigma1_sq = tf.nn.conv2d(img1*img1, window, strides=[1,1,1,1],padding='VALID') - mu1_sq | |
sigma2_sq = tf.nn.conv2d(img2*img2, window, strides=[1,1,1,1],padding='VALID') - mu2_sq | |
sigma12 = tf.nn.conv2d(img1*img2, window, strides=[1,1,1,1],padding='VALID') - mu1_mu2 | |
if cs_map: | |
value = (((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)* | |
(sigma1_sq + sigma2_sq + C2)), | |
(2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2)) | |
else: | |
value = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)* | |
(sigma1_sq + sigma2_sq + C2)) | |
if mean_metric: | |
value = tf.reduce_mean(value) | |
return value | |
def tf_ms_ssim(img1, img2, mean_metric=True, level=5): | |
weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32) | |
mssim = [] | |
mcs = [] | |
for l in range(level): | |
ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False) | |
mssim.append(tf.reduce_mean(ssim_map)) | |
mcs.append(tf.reduce_mean(cs_map)) | |
filtered_im1 = tf.nn.avg_pool(img1, [1,2,2,1], [1,2,2,1], padding='SAME') | |
filtered_im2 = tf.nn.avg_pool(img2, [1,2,2,1], [1,2,2,1], padding='SAME') | |
img1 = filtered_im1 | |
img2 = filtered_im2 | |
# list to tensor of dim D+1 | |
mssim = tf.stack(mssim, axis=0) | |
mcs = tf.stack(mcs, axis=0) | |
value = (tf.reduce_prod(mcs[0:level-1]**weight[0:level-1])* | |
(mssim[level-1]**weight[level-1])) | |
if mean_metric: | |
value = tf.reduce_mean(value) | |
return value | |
def bright_SSIM(y_true, y_pred): | |
SSIM_loss = tf_ssim(tf.expand_dims(y_pred[:,:,:,0], -1), tf.expand_dims(y_true[:,:,:,0], -1))+tf_ssim(tf.expand_dims(y_pred[:,:,:,1], -1), tf.expand_dims(y_true[:,:,:,1], -1)) + tf_ssim(tf.expand_dims(y_pred[:,:,:,2], -1), tf.expand_dims(y_true[:,:,:,2], -1)) | |
return SSIM_loss/3 | |
def psnr_cau(y_true, y_pred): | |
mse = np.mean((np.abs(y_pred - y_true)) ** 2) | |
max_num = 1.0 | |
psnr = 10 * np.log10(max_num ** 2 / mse) | |
return psnr | |
def save_model(model, name, epoch, batch_i): | |
modelname = './Res_models/' + str(epoch) + '_' + str(batch_i) + name + '.h5' | |
model.save_weights(modelname) | |
def imread_color(path): | |
img = cv.imread(path, cv.IMREAD_COLOR | cv.IMREAD_ANYDEPTH) / 255. | |
b, g, r = cv.split(img) | |
img_rgb = cv.merge([r, g, b]) | |
return img_rgb | |
# return scipy.misc.imread(path, mode='RGB').astype(np.float) / 255. | |
def imwrite(path, img): | |
r, g, b = cv.split(img*255) | |
img_rgb = cv.merge([b, g, r]) | |
cv.imwrite(path, img_rgb) | |
# scipy.misc.toimage(img * 255, high=255, low=0, cmin=0, cmax=255).save(path) | |
def range_scale(x): | |
return x * 2 - 1. |