File size: 4,530 Bytes
f318440
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import tensorflow as tf
from keras import backend as K
import numpy as np
import scipy
import os
import cv2 as cv

def bright_mae(y_true, y_pred):
    return K.mean(K.abs(y_pred[:,:,:,:3] - y_true[:,:,:,:3]))

def bright_mse(y_true, y_pred):
    return K.mean((y_pred[:,:,:,:3] - y_true[:,:,:,:3])**2)

def bright_AB(y_true, y_pred):
            return K.abs(K.mean(y_true[:,:,:,:3])-K.mean(y_pred[:,:,:,:3]))

def log10(x):
    numerator = K.log(x)
    denominator = K.log(K.constant(10, dtype=numerator.dtype))
    return numerator / denominator

def bright_psnr(y_true, y_pred):
    mse = K.mean((K.abs(y_pred[:,:,:,:3] - y_true[:,:,:,:3])) ** 2)
    max_num = 1.0
    psnr = 10 * log10(max_num ** 2 / mse)
    return psnr

def _tf_fspecial_gauss(size, sigma):
    """Function to mimic the 'fspecial' gaussian MATLAB function
    """
    x_data, y_data = np.mgrid[-size//2 + 1:size//2 + 1, -size//2 + 1:size//2 + 1]

    x_data = np.expand_dims(x_data, axis=-1)
    x_data = np.expand_dims(x_data, axis=-1)

    y_data = np.expand_dims(y_data, axis=-1)
    y_data = np.expand_dims(y_data, axis=-1)

    x = tf.constant(x_data, dtype=tf.float32)
    y = tf.constant(y_data, dtype=tf.float32)

    g = tf.exp(-((x**2 + y**2)/(2.0*sigma**2)))
    return g / tf.reduce_sum(g)

def tf_ssim(img1, img2, cs_map=False, mean_metric=True, size=11, sigma=1.5):
    window = _tf_fspecial_gauss(size, sigma) # window shape [size, size]
    K1 = 0.01
    K2 = 0.03
    L = 1  # depth of image (255 in case the image has a differnt scale)
    C1 = (K1*L)**2
    C2 = (K2*L)**2
    mu1 = tf.nn.conv2d(img1, window, strides=[1,1,1,1], padding='VALID')
    mu2 = tf.nn.conv2d(img2, window, strides=[1,1,1,1],padding='VALID')
    mu1_sq = mu1*mu1
    mu2_sq = mu2*mu2
    mu1_mu2 = mu1*mu2
    sigma1_sq = tf.nn.conv2d(img1*img1, window, strides=[1,1,1,1],padding='VALID') - mu1_sq
    sigma2_sq = tf.nn.conv2d(img2*img2, window, strides=[1,1,1,1],padding='VALID') - mu2_sq
    sigma12 = tf.nn.conv2d(img1*img2, window, strides=[1,1,1,1],padding='VALID') - mu1_mu2
    if cs_map:
        value = (((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*
                            (sigma1_sq + sigma2_sq + C2)),
                        (2.0*sigma12 + C2)/(sigma1_sq + sigma2_sq + C2))
    else:
        value = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*
                            (sigma1_sq + sigma2_sq + C2))

    if mean_metric:
        value = tf.reduce_mean(value)
    return value

def tf_ms_ssim(img1, img2, mean_metric=True, level=5):
    weight = tf.constant([0.0448, 0.2856, 0.3001, 0.2363, 0.1333], dtype=tf.float32)
    mssim = []
    mcs = []
    for l in range(level):
        ssim_map, cs_map = tf_ssim(img1, img2, cs_map=True, mean_metric=False)
        mssim.append(tf.reduce_mean(ssim_map))
        mcs.append(tf.reduce_mean(cs_map))
        filtered_im1 = tf.nn.avg_pool(img1, [1,2,2,1], [1,2,2,1], padding='SAME')
        filtered_im2 = tf.nn.avg_pool(img2, [1,2,2,1], [1,2,2,1], padding='SAME')
        img1 = filtered_im1
        img2 = filtered_im2

    # list to tensor of dim D+1
    mssim = tf.stack(mssim, axis=0)
    mcs = tf.stack(mcs, axis=0)

    value = (tf.reduce_prod(mcs[0:level-1]**weight[0:level-1])*
                                    (mssim[level-1]**weight[level-1]))

    if mean_metric:
        value = tf.reduce_mean(value)
    return value

def bright_SSIM(y_true, y_pred):
    SSIM_loss = tf_ssim(tf.expand_dims(y_pred[:,:,:,0], -1), tf.expand_dims(y_true[:,:,:,0], -1))+tf_ssim(tf.expand_dims(y_pred[:,:,:,1], -1), tf.expand_dims(y_true[:,:,:,1], -1)) + tf_ssim(tf.expand_dims(y_pred[:,:,:,2], -1), tf.expand_dims(y_true[:,:,:,2], -1))
    return SSIM_loss/3

def psnr_cau(y_true, y_pred):
    mse = np.mean((np.abs(y_pred - y_true)) ** 2)
    max_num = 1.0
    psnr = 10 * np.log10(max_num ** 2 / mse)
    return psnr

def save_model(model, name, epoch, batch_i):
    modelname = './Res_models/' + str(epoch) + '_' + str(batch_i) + name + '.h5'
    model.save_weights(modelname)

def imread_color(path):
    img = cv.imread(path, cv.IMREAD_COLOR | cv.IMREAD_ANYDEPTH) / 255.
    b, g, r = cv.split(img)
    img_rgb = cv.merge([r, g, b])
    return img_rgb
    # return scipy.misc.imread(path, mode='RGB').astype(np.float) / 255.

def imwrite(path, img):
    r, g, b = cv.split(img*255)
    img_rgb = cv.merge([b, g, r])
    cv.imwrite(path, img_rgb)
    # scipy.misc.toimage(img * 255, high=255, low=0, cmin=0, cmax=255).save(path)

def range_scale(x):
    return x * 2 - 1.