File size: 1,634 Bytes
fe8b674
 
c3f244d
fe8b674
 
 
 
 
8d9605d
89630a1
 
8d9605d
89630a1
 
 
 
 
 
 
fe8b674
89630a1
 
 
 
fe8b674
89630a1
 
 
 
fe8b674
89630a1
 
 
 
 
 
c32f067
89630a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe8b674
89630a1
 
 
 
 
 
fe8b674
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import cv2
from time import time
from alpr import *
import torch
import cv2
import numpy as np
import tensorflow.compat.v1 as tf
import os
import streamlit as st
from PIL import Image
import streamlit as st

def load_image(image_file):
	img = Image.open(image_file)
	return img
	
	
st.subheader("Image")
image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])

#if image_file is not None:
    # To See details
    #file_details = {"filename":image_file.name, "filetype":image_file.type,"filesize":image_file.size}
    #st.write(file_details)

    # To View Uploaded Image
    #st.image(load_image(image_file),width=250)
    
submit = st.button('Generate')

if submit:
    model = torch.hub.load('ultralytics/yolov5', 'custom', path='yoloocr_best.pt')
    model.cpu()
    model.conf = 0.5
    license = DetectLicensePlate()
    counter  = dict()
    frame = np.array(image_file)
    try:
        plate_img = alpr(frame,license)
        #plate_img = cv2.resize(plate_img,(200,50))
        results = model(plate_img*255)
        #print(results.xyxy[0])
        name = results.pandas().xyxy[0].sort_values('xmin').iloc[:, -1]
        name = "".join([i for i in name])
        if name not in counter and name != '':
            counter[name] = 1
        if name in counter and name !='':
            counter[name] +=1
        plate_name = list((sorted(counter.items(),key = lambda item:item[1])))[-1][0]
        print(plate_name)
    
        #cv2.imshow("Plate", plate_img)
        st.write(plate_name)
    
    
    except Exception as e:
        
        counter.clear()
        print("Plaka bulunamadı")