RivianG commited on
Commit
89630a1
·
1 Parent(s): 4313318

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -29
app.py CHANGED
@@ -7,38 +7,55 @@ import numpy as np
7
  import tensorflow.compat.v1 as tf
8
  import os
9
  import streamlit as st
 
 
10
 
 
 
 
 
 
 
 
11
 
12
- model = torch.hub.load('ultralytics/yolov5', 'custom', path='yoloocr_best.pt')
13
- model.cpu()
14
- model.conf = 0.5
15
- license = DetectLicensePlate()
16
- counter = dict()
17
- frame = cv2.imread("")
18
- try:
19
- plate_img = alpr(frame,license)
20
- #plate_img = cv2.resize(plate_img,(200,50))
21
- results = model(plate_img*255)
22
- #print(results.xyxy[0])
23
- name = results.pandas().xyxy[0].sort_values('xmin').iloc[:, -1]
24
- name = "".join([i for i in name])
25
- if name not in counter and name != '':
26
- counter[name] = 1
27
- if name in counter and name !='':
28
- counter[name] +=1
29
- plate_name = list((sorted(counter.items(),key = lambda item:item[1])))[-1][0]
30
- print(plate_name)
31
- coord = results.pandas().xyxy[0].sort_values('xmin').iloc[:,:]
32
- if len(coord) == 0:
33
- counter.clear()
34
-
35
- cv2.imshow("Plate", plate_img)
36
-
37
 
 
 
 
 
38
 
39
- except Exception as e:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40
 
41
- counter.clear()
42
- print("Plaka bulunamadı")
43
-
 
 
 
44
 
 
7
  import tensorflow.compat.v1 as tf
8
  import os
9
  import streamlit as st
10
+ from PIL import Image
11
+ import streamlit as st
12
 
13
+ def load_image(image_file):
14
+ img = Image.open(image_file)
15
+ return img
16
+
17
+
18
+ st.subheader("Image")
19
+ image_file = st.file_uploader("Upload Images", type=["png","jpg","jpeg"])
20
 
21
+ #if image_file is not None:
22
+ # To See details
23
+ #file_details = {"filename":image_file.name, "filetype":image_file.type,"filesize":image_file.size}
24
+ #st.write(file_details)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
+ # To View Uploaded Image
27
+ #st.image(load_image(image_file),width=250)
28
+
29
+ submit = st.button('Generate')
30
 
31
+ if submit:
32
+ model = torch.hub.load('ultralytics/yolov5', 'custom', path='yoloocr_best.pt')
33
+ model.cpu()
34
+ model.conf = 0.5
35
+ license = DetectLicensePlate()
36
+ counter = dict()
37
+ frame = cv2.imread(np.array(image_file))
38
+ try:
39
+ plate_img = alpr(frame,license)
40
+ #plate_img = cv2.resize(plate_img,(200,50))
41
+ results = model(plate_img*255)
42
+ #print(results.xyxy[0])
43
+ name = results.pandas().xyxy[0].sort_values('xmin').iloc[:, -1]
44
+ name = "".join([i for i in name])
45
+ if name not in counter and name != '':
46
+ counter[name] = 1
47
+ if name in counter and name !='':
48
+ counter[name] +=1
49
+ plate_name = list((sorted(counter.items(),key = lambda item:item[1])))[-1][0]
50
+ print(plate_name)
51
+
52
+ #cv2.imshow("Plate", plate_img)
53
+ st.write(plate_name)
54
 
55
+
56
+ except Exception as e:
57
+
58
+ counter.clear()
59
+ print("Plaka bulunamadı")
60
+
61